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NASA TT F-9LAfi

RESEARCH ON _.E MOTION OF .v/NORPLANETS */1

Part I

H.v.Zeipel-_-_
/

Semiconvergent trigonometric series in powers of a small /
parameter, based on Poincare's methods, arc applied to a /
qualitative theory on the motion of _minorplanets and on |
the origin of gaps in the interpl_Lnetaryasteroid belt.
The asteroids are grouped _nto characteristic ordinary, \
singular, regular, and critical planets whose mean abso- \
lute motion is compared with that of Jupiter. A formal \

• theory is developed for critical planets of the (p + q) :
p type, and the absence o_ gaps in:the asteroid belt at |

q > 5 is explained by the derived fact that the motion of /

"critical" minor planets is stable above this ___

- In his authoritative work "New Methods of Celestial Mechanics" (Les
Methodes Nouvelles de la M_.can_queCeleste), Poincare discussed the principles
of the formal integration of certain classes of differential equations that are
frequently encountered in dynamics. Poincare's basic corcept is the use of

semiconvergent trigonometric series, expanded dn powers of a small parameter.
Because of the canonical form of the equations, always retaihed by Poincare, his

methods are extremely elegant. In s,_chcomplex problems as celestial mechanics,
elegance and symmetry of the formulas are naturally oi major importance.

i In Vol.l of his "Lectures on Celestial Mechanics" (Lemons de Mecanique
C_leste), Poincar_ himself applied thes_ principles to a qualitative study of
the _mo__on of the major planets.

_. . The modern theories of the moon, developed in a detailed manner by DelaunaY
and by M.E.W.Brown, are based on similar principles.

,_ In the research, whose first part is given here, I intend to apply these
....same principles (with several necessary modifications) to a Qualitative theory

Of minor planets,[

i Specifically, I intend to investigate cases in which the problem of minor /2
planets can be formally solved by the above-mentioned semiconvergent series.

_owever, I will also specify so-called exceptional cases where entirely new
Methods must be invented. It will be demonstrated that a study of these excep-

T
r

. _ _,_ _ Ntu_ber_in the margin _ndic_te pagination in the original foreign text (Vol.ll_
, _ No.l)

•_ _' _-_Received 8 September 1915.
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NASA TT F-9&_5

tiona3 cases is __ntimatelyconnected with tilequestiu_,as to the origin o£ the
gaps in the interplanetary asteroid belt. Incidentally, this is a question,
importax.tnot only from the analytical viewpoint but also from the cosmogonJ_"
viewpoint, which is still far from soluticn.

At the top of our entire research complex, in Section 1 of this Part i, we

will discuss a general method for reducing, as far as possible, the degree of
freedom of certain,canonical systems of differential equations. !n Section 2,
we will give differential equations, in a convenient form.,on the motion of
minor planets.

In the following Sections of this Part, we will assume that the mean motion
of a minor planet is not in sn approximately commsmsurable and simple ratio to
that;of Jupiter. These minor planets have become known as "ordinary',planets
("gewohnl_che,,planets according to the tetT_unologyof Brendel). First, in ;,
Section 3, we will apply the method developed in Section 1 to the theory of
these ordinary planets, by elimir_ting the two mean longitudes. This will yield
differential equations of secular inequalities. The entire difficulty of the
problem is thus reduced to the integration of a canor.icalsystem with two de-
grees of freedom. In Sections &, 5, and 6 we will develop secular inequalities
in series arranged in accordance with the order of magnitude of the ter_s, tak-
ing into consideration the eccentricities, the inclination, and the square root
of the mass of Jupiter, as quantities of the first order of magnitude. The vari-
ous terms of these series are trigonometric functions of the two arguments w'

- and w", which are linear with respect to time. The velocities of the mentioned
_ arguments are of the order of the mass _ of Jupiter, i.e., of the second order
:- of magnitude. However, the velocity of the argument _' + w" is of the fourth
_- order of magnitude (or, occasionally, smaller). All difficulties of the problem'

result from this fact. It follows from this that the terms composing the expan-:
sion of secular inequalities are rational functions with respect to the mass of _
Jupiter, to the eccentricity of its orbit, and to the moduli of the eccentrici-

• ty and the inclination of the orbit of the minor planet. The denominators of /3
these ratLonal functions are powers"of a certain quantity 6 which is homogeneous

" and linear with respect to the mass of Jupiter, to the _quare of the eccentrici-
_ hY of its orbit, and to the squares of the moduli of eccentricity and inclilm-

tien of the orbit of the minor planet. In addition, _6 more or less represents
the velocity of the argument w' + w" mentioned above.

" Because of the divisor _ ich apparently has escaped the attention of
_' scientists, two categories o''t_dinary minor planets must be differantiated:

_e_ular planets for which 6 truly is of the second order of magnitude (compar-
able with _ ) and singular planets for Which 6 is of the 5bird order of magnitud,
(comparable with _r_) or smaller.

" The developments of the secular inequalities, formed in Sections &, 5, and l

_ _, lead to a complete solution of the problem for the case of regular planets.

._ _onversely, for singular planets, the mentioned series can no longer be used.

The theory of singular planets will be treated in Part II of this research

Later, we will also study the ca._ein which the mean motion of the two
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planets arc more or less at a simple and commensurable ratio. This wi]l finally
lead to the problem as to the origin of the gaps in the distribution of ,_heas-
teroids.

Section i.

In celestial mechanics, frequently differential equations of the following l
type are encountered:

dx_ d F dy_ d F
-dY= d-_' _-_ dz_ (i==I,2....,),

(11
d_k _ F .d,_,_ dF =(k-----l, 2, 8).
dt d_t ' df -- d_k "'"

The characteristic function F does not depend explicitly on the time t. This
function can be expanded in powers of a small parameter _, so that

F(_, y_;_,.r,k)= F° + _F. +.-'F,+ .

....The functions Fx, Fs,_... are periodic with the period 2n with respect to the /&
variables Yl, ..- Yr and cB_.be expanded in powers of _k and _ (k = I, 2,
_.. s) and do not change :)nsimultaneously changing the signs of the variables
Yx, ....Y._; _I, -.. 9_.. Thus, by posing

_kf@coscok, _k=eksin_, (k=l, 2.... s) (2 i
J i
exfansions of the following form will be obtained:

where the Pl , _ , mk are integers so that m_ - lqkI is even and nonnegative.
The coefficients C depend only on the variables xz, ... x_. The first term Fo
has the particularly simple form

I

_ Where h is any function of x_, ... xr while _i, ... v, are certain constant co-

efficients. Thus, Fo does not depend on the angular variablee yx, ... Yr ; wx,

! Posing _ = 0 in eqs.(1), the integration becomes immediate. In this case,
_:, _ are arbitrary constants. In addition, we have y_ = n_t + ct, _ = _t +

"_ _ y_ where, again, c: and y_ are arbitrary ccnstants. The quantities n: are

_ _ven by the formula

'_-- _W--d-_' (_i

, If the q_mntity _ is not zero but sufficiently small, it becomes possible

3

I

1965019998-004



to formally satisfy eqs.(i) by means of certain semiconvergent series of a pure,
ly trigonometric form. These series were specifically studied by Poin_arg.
However, the series in question are not valid for all the values of arbitrary
constants that enter these series. The difficulty depends on the introduction
of small divisors of the form

where Pl and q_ are integers. Thus, a complete integration of eqs.(1), from
_ the formal viewpoint, has never been possible.

_ _ If the integration constants are so selected that no small divisors of the
:_ above-indicated form exist (for not too large values of the numbers Pi and _ ),

_: then the integration can be performed by the Lindstedt method.
;5

:_ _ If only a single small divisor is present, the Bohlin method will be suc-
- cessf_11.

i? However, if the number of small divisors is greater than unity, a general
_ method for performing the formal integration is still required. Nevertheless,

: by means of convenient transformations it becomes occasionally possible to re-
-_ duce the problem to the Lindstedt case or to the Bohlin case. The theory of

_ minor planets furnishes examples for this.
2,

:_ ! In the research scheduled by us, it is of importance to reduce, as much as
;;_possible, the degree of freedom of the canonical system (1). Fer this purpose, ....
-'_-let us start from the equation of partial derivatives
_: !

r y,; , J, (6

_ where F(xi, Yt ; _, _) is the characteristic function of the system (1) while
F_(xi, yi ; _k, _) is a new converJ.ently selected function.

_ci , Let

_() I

,_) _e a particular solution of eq.(6). In eqs.(1), we will substitute the va_abl, s

, y_; _, _ by the new variables x_*, y_*; _* q
_ , T_*, defined by the followin

,; _quations: I
_ _ d_(x_*,_; _k*,_,k) ;

dy_ ' dzt* ' t -

,,_ e will then__mve 6 -
19

_, F (x_,y_;_, '_k)'="F* (_*, y_*;_*, _*)

_ _s well as the n(w c_nonical system

L
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It then is a question of selecting the function F* in a convenient manner

so that no small divisors are present in the function S and so that the degree
of freedom of the new system (8) can be diminished.

Let us expand S and F* in powers of _ by posing

----80 +t_8, +_'8, +.--,

_ F* = Fo* + _lF,* + tdF3* + ...,

_' and, in the expansions of the two members of eq.(6), let us equate the coeffi-

_ cients$of o, of _, of _a, etc.

'; ; Setting

:_ " 12_,k(_l + 11),._ _ _¢o*- _0_--h (zd --_ I

..... i
-_- ;q.(6) will be satisfied for _ = O. :
?_

J . Let us next equate the coefficients o" _ in the two members of eq.(6), i
_ Making use of the notation (5), this will :/,eld iI

,2

--_a_--- --_._k_-_k+ F, (z.Vi;_._,_)-, a_i "

- .. dS,

a, ?hen, by means Of the formulas (2), let us introduce the variables _, % in-
_, _tead of the variables {_, _. This will yield the eqvation

, _ .. dS, _ dS, =.
, ;""d-Vi+ 2 F,-- (i0)

_ In view of eq.(3), we will have an expansion of the following form for F_:

',-_ F,= 2 0 cos(2_ V_+ 2 _to_),

:;" fter thi_, we can satisfy eq.(lO) by selecting for Sx and for F_* the follow-
_' !ng expressions:

1 | " 8, --2 ,0 sin (2 p_y_ + 2_D,'

q9650 q9998-006



FL*----Y."C cos (Y.p_yl + _gk_k). !I
i

In _ we have excluded all terms who_e divisors (5') would be small; these termi
with small div'isors are combined in the sum I_".

A given divisor will be considered sm_ll if it is of the order/_ or less.

It should be noted here that the divisoi's are approximately constant. In fact,
it will be found that their variations are of the order of _.

_ After having selected the functions $I and FI* in this manner, we will comW
pare the coefficients of IS2 in the series expansions of the two members of1"

eq.(6). This will yield the equation

c+ dy_ + 2_, = F,+--F,*, (iii

;_ by posing, for abbreviation,
i -

_ i " dlTk ,
E

-_5 ' [

'B+''+''+""+++,+"++"' ]++' J + m+.,,+j.'t"',d_--FJ++'+,d,.,,,,++ ,,:-,+:-,+ - "++t_-,I-t+1I' , .....
L": + +

:' i For F_*, we will .%electthe ensemble of the terms of the trigonometric
_i _xl_ansion for Fs, whose divisors are assumed as small. After having selected
_ p_ in this manner, eq.(ll) can be satisfied by a function Sz whose expansion
_ contains no terms enlarged by the integration.

_ Obviously, we can continue in this manner and thus completely determine thI

_ _arious terms of the exp_sions (9). !
+',7

_s Let us investigate the new canonical system (8) in more detail. In analo_+-'<,' _,o the formulas (2), let us put

i _* ----@* cos _*, _* = Ok*sin _o_*.
!"

_ Phe function F*, expanded in multiples o,ut"the arguments Yt* and _* contains onl_
_+ _rguments with small divisors. Let

'++'_, Y,,:,_',,++_o_,,, t'_=,,2,...,,>
iB t--I k--I

_t, _e the small divisors that are linearly independent (where a}_) and c_ I=) are
__ven integers). If the parameter ts is _ufficiently small and if the quantf-

%_ ;ies n_ and _ are not extremely small (pf the order of/_ or smaller), we
I

i _,tutti,,.,,. • ..... .+:; : + _- __,, ._ :
[=__ .......... ,._ u._ _ _ ........ _ .......................,

i
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certainly will have m < r All the arguments

which appear in F*(x_*,y_; _;, _*) are then linearly composed of m arguments

i--I k-I

_ • dF____* dF*
Similarly, the partial derivatives _j_ and U are mutually and linearly

, composed of m.

_ After this and in view of the fact that the canonical system (8) can be
replaced by the system

i, dx_* dF* dy_* dF*

i. dt d_* ' dt d:_* '

): _ 1_ *, (13
" ._ d -2ek dF* doJk* dF*

.' ' dt _ dcok*' dt d !.2

_t is obvious that we will have r + s - m first integrals which are linear and

_- homogeneous expressions with respect to the variables x* and _ Ok.2 with inte-
'W_ i

_ gral coefficients. Thus, the degree of freedom of the system (8) or (13) can
....be lowered to m.

_ ,I It is often possible, by means of convenient transformations, to place the
reduced system _n the form (i) and to continue the reduction in this manner un-

, til the degree of freedom becomes zero or one. This will then permit formal in-
;egration of the system (i).

_ _ection 2.

_ Here, we will apply the above reduction method to the general problem of
_ _nor planets.

_' Primarily, it is necessary to bring the _quations of :notionto the form of

_ Let us consider a minor planet of infinitely small mass, moving under the
_: Lttraction of the Sun and of Jupiter. Let us assume that the planet Jupiter
_% _oves in accordance with Kepler's laws in an ellipse with an eccentricity e'.

_(' _ Let x, y, z be the rectangular coordinates of the minor planet in a system

_ _f coordinates whose origin is located a_ the center of the Sun and whose z-axi_
_ .s perpendicular to the orbit of Jupiter. Let r and rx Be the radius vectors oM

I

1965019998-008



_he planetoid and of Jupiter. As unit length, let us _ -t the semimaJor axis i

Of the orbit of Jupiter arid,as unit mass, the sum of _oes of both Sun an4
Jupiter, and let us fix the unit time in such a manner _ the gravitational !

. constant will be equal to 1. Let, finally, _ be the mass of Jupiter and H the i

angle to the Sun between the radius vectors directed toward the minor planet
and toward Jupiter. Then, the equations of motion of the minor planet can be i
written as follows:

_z d_ dx d_ I
l

d_-----_' a-7=_" t

, dy a_ du' d_ (ii

,_ i dz d_ dz_ d#

:_, },/here

i9 t 1, ,t 1
_ , "Y°=-- 2 _z + Y" + z't} + r'

! 1 r cos H 1

-_'_5.--!__, 1_1= Vr I -- 2%r cos H + r" ...... rl r

.2:jiSee' for example, Tisserand, (Bibl.1).]

-[ AS variables, we will introduce '.canonicalelements,,defined in the follow__

?i_:_ngmanner: Imagine a moving point o? mass o_2. a'tracted toward a fixed cente_
" i 1 . .

_l_ bY a force of the magnitude 7" where r _s the distsmce of the moving point I

;_ _rom the fixed center. In this case, the moving point describes a cou[c sectiol
_ about the fixed center as focus, in acc_:rdance_.ithKepler's laws. Let us as-

_' _ume that the orbit is an ellipse and thah a, e, I, &, g, 8 are its Kep._eria_
_ _lements such that a is the semimejor axis, e the eccentricity, I tb_ _'nclina-
_c_ tion, _ the mean anomaly of the moving point, g the dists__ceof th_ Fc_hellon

_ to the ascending node, and 8 the longiO_'_eof this node. The coordinat.,_.,x, y,
_ _ of the moving point with respect io the fixed center and i_s velocit__ _m-

t t . ' , _ _ '

3'_ _onents x , _ , z are then certain wel_-known functions of tne Keplet_ ele-
_i._ents a, e, I, &, g, e or else of the canonic_[ e]._mentsL, u, i _ ., 3 whose
,i _hree first are given by the formulas
:2

' _ _ = I/_, 0 - V_(_---7.."i, e = V_(_-,,) oo_./"

'_ . On substituting, in eqs.(1), the va_iabies x, y, z, x , ,/ . _ by the /]i
,c, =anonical elements L, G, @, _, g, e, the equations will become

_ dZ dF dl d_

_,, _--_' _ -YO.'
i



de d_ do d_

Since ,he integral of the vis viva in the Keplerian :¢otionis given, we
i will have

1 I 1 ,-_.= -- (_"+y"+z")+ ?= )-a 2Z'
i

In accordance with the above selection of units, the mean motion of Jupite#

_ is equal to I. We will count the longitudes starting from the perihelion of !
,., Jupiter. By counting the time from the passage of Jupiter through its peri- i
_., helion, the mean longitude (or mean anomaly) of this planet will be t. The per_
i_ turbing function _i is periodic, with the period 2_, _th respect to the angula_
_. variables L, g, e, t.

:- We will first substitute the variables
!4

I'_ L, O, O,

:: l, g, 0

:_ y,_l+g+O, co1=--g--O, _o,------0 ...................

:" ,,ndthen by

', z,, _,= O,cos_,, _,= O,cos_,.

/' _t,, '11_=Q,sin ,.,, _,_-Q,sin co,.

<?

it is well known that these changes in the variable_ retain the canonical form L12
:,_. _f eqs.(2).

_- Finally, to obtain the form of eq.(i) in Section i, _e will introduce _he

_ mxiliary variables x_ and y_ defined by,the fermulas

i Y2==_, dx, d/_

._ This will yield the canonical system

__ dzk dF d_l_,=. dF
,_, ,T[- _-_' -_;-- d_'

l_" k-- 1, 2 (3 t

_'_ _here [ '
t

i
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1

] rcos_ l (_)
F,,= Vr;--2r_rcosH + r t r; --r"

Ordinarily, the perturbing function Fl is expanded in. a trigonometric

: series in accordance with multiples of the lon_tud,=s

- Yi+_,, y:+(,=, --_,+_,, w, :

- J

•: of the two-p_ets and of their perihelions, start-ing from the node. This ex-

;" pansie.n .hasthe form "- i

_, F, =ZAe"e" ran21 eos[i, ly,+_,,) + i21g=4"_',) :

- j,(---,+,_,)--_",_,]

) : is 1 .l=r .. ,
.:_: . : -=V..Az"£" %_in_l) c_st,,y,+i=Y=+#,_,+J,_,),

--_:--by setting 2",= i,+ _,--#,--#,.: "5 C

:<. The diff_eremces m _-l J* l, m' - !j_l, 22-- 1_! are even and > 0 [see TisseranA_ ....

2-_ (Bibl.2)]. The expressions of the cceffieients A, as functions of a, had been

_-:....g£vem, by Le Verrier and Newcomb.

_'_ . However, it is necessary £0 introduce +.he canonical elements xl, Px, ::rodPs

_: instead of the Keplerian elements a, e, I.. Since the fomulzs that express x,,

>-" P,, and Ps as functions of a, e, I are _ven, we obtain

V; -•. :, e: -sin'/=- el ....
_........ :. a- :], , - pe__ 4z,' 9_ 4_--..e:"
>-

5; By e_panding in povlers of _i, Oz, and e', we finally obtain the series

._' F, = 2 F !'_."_."o';_',_":_o° (4,,j,+ i,y,+ i, e,, + #,_,). (5

I
=_ Here, m_ and _ are even numbers; we still have
,3 -i

- "" _ ,',,=1_,1+ _,,

1 m: _ ILl + _=,; (6!
-': i _-I_,+_=-_,--i,l+_, '

m+m,+m,==li,+i=I F2k. i:<) 4 i

_,: _here k,, k;, k, and k are positive whole numbers or zero. ), i

i i0 ;

)
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The coefficients Fi-i''*''2i depend on xl but are independent of x_ (x2 ap-1,1 :_,: I,._ :_

pears only in Fo ). Obviously, we can assume that

FI,,..,-:.,_,; F!,_, .-,,,,.1--ih--i_.--j:,-j; _ '],'_.3b_ •

Section 3-

We will now apply _he methcd given in Section 1 to the system (3) of the
preceding Se:tion.

In the actual case, we have r = s = 2 and

_,,_ _',_0,

I

h(x,,x.)= _-- z.,
nt_Z'[, s, n._].

Assuming that _ = O, the quantity nx is nothing else but the mean motion
of t_e minor plan_'_whose motion will thus be of the Keplerian type.

In Part I of this report, we will assume that nl is not very close to a

simple rational number. Thus, we will first discuss the theory of "orddnaz-j"
planets.

In this case, the arguments with s_ll divisors are t_'_sethat are inde-

pendent of y, and ys.

Let us assume that, in accordance with the rules laid down in Section i,

the ftmctions S(xk, _ ; _k, _ ) and F*(_ ; Ek, _ ) as we3_las the canonical
transformation that corresponds to the function S(__, y_; -[k*,_0-) are formed.

• _ _ -_- _ . . _ -_
The functlon F (r4; _k, '_) Is Independent of the arguments Yx_and_y2.. The new
canonical system, formed with the characteristic function F*(x_; _{, _), thus

. will have the two following integrals:

- Z,* = COllS_., Z:_* = const.

The variables k, _* satisfy the equations

d_* _F* dr,_* dF* (k= 1, 2). (i'

j •

_. Afte_ integrating these equations, we obtain the arguments YI*and y_*after

. £uadr-sturesby means of the formulas

_'_ d$ "= -- dz_--_

Equations (I) and (2) are known as equations of secular variations. !
"_J i

ll
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Before proceeding to their _tegration, it is preferable to make a more

detailed study of the functions S and.F_"as well as of the canonical transforma-
tion which corresponds to S(_, Yk; _, _). Let us put, as in Section l,

F* = Fo* + ,uF,* + p'F,e + ---,

,_ =So +!_q, +p'8, +---.

First, we have /15

!
F0*= Fo = -l+--z2,

++ 2z, (3)

2

k-1

Then, we must put

': F,*= .__'o,_i,,J, _, _, cos(j,_,,+ j,co,), (_.
-+_

•,-.+,,_i,._,_ ...._. _,y,+i,_,+i,,o,), (5)• 8,=2_ =_._e e, _, --- (i,y,+
$1nl "l- $2 +l *

i

+_ while excluding in f a]l the terms where i_ =im = O. We recall that the rela-
__ tions (6) of Section 2 are still valid.
_+

++_ In continuing, it is first necessary to form the function F_ in accordance
•d.th the general formula (12) of Section 1. We thus have

3 +ld,9, __ d F,d _,

"2.

+. ++Z./+F,es' ej ,.es,l (6)

,_ Since the form of the functions Fx, FI*, and S+ as well as the conditions (6) of

: Section 2 are given, it is ob_ous that F_ will have the same form as Fx [eq.(5)
++' in Section 2], with the only exception that, in the conditions (6) of Section 2_

, We must replace m by m + 2. When this-is done, F_ will be the sum of the terms
+, Of F_ where i_ = _ = O; finally, Sm is ob+ained, after integration, from the

_ormula
v dS_

+h ! .

+11 + _ o_ us to eq.(ll) +f Section i.

t,++i We can continue in this manner and thus successively form the functions F_

"'_ _:, and St. This will yield _!_

! ,_-1 -_ ]L_,_il'ttltfttt _ wit m2_. '- .+.-,"+,.+,..,,...,'+ e, _, cos(i,_,+ _,,.i,+j,,,,,,* j,_,.,.+), (71

12 i +
+:

?

_++-+ , , - -- ,,,+,++ j',,- +
, ++ +
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-- o,o.;,,j_ v, vt cos .h,._, + _'_v_.),
(_)

F""&':"''TM
_' .- tI'I_21'$_ .'mtimlnff_ t&.=_ i,,,;+O, _ _, _, _i_.(i,v,+i.v,+ i,,., +j,,.,), (9)

with the conditions

"', =l/,I + 2k,,

m,=l/,l+2/,',, m_ar.d _, even (I0)

m-,.2_-2 =li, + i,-j,-j, I+ 2k

for Ft and St , and with the conditions
O

m,=lJ, I + 24,
m,= IJ,I + =z=, r_ and _a, even (11)

,., + 2,:--2 = I/, + J,I + 2,_
.v

for F_.

In eqs.(lO) and (ii), the quantities kx, ks, mud _ are nonnegative _tegers.

Obviously, the auxiliary variable xs does not enter the expansions (7),

(8), and (9).

• Let us now pass to the canonical transformation which, in ac:orda_ce with

the general formulas (7) of Section i, corresponds to the f,mction S(_, _;

{_, _k ). We can write it it, the form, of

d_8--s,) d (a--_o)
xt--z,*_ dyt -- ' y'--Yt*---- dz,* ' (12)
_. _., =.d(8--8") d(8--8,)
-'*--_" d---_-- ' _-- :'_*-= d_&,*....

On the one hand, we have excluded the relation that yields xa - _ since we no

longer require the auxiliary variable x_ and, on the other ,hand, the relation

ym - y_ = 0 which shows that

9,*--=9,_ t. (13

This leaves eqs.(12) to be sol_ed with respect to the variables xx, Yx; {_ i• W W W
" _. Obviously, the dlfferences xl - xl, Yl - Yl, F'k - {k, _ - _ can be ex- /_7

; . t W K- . _., = W
,. panded in powers of _, e , _-k, _ aswell as In multlples of the ar&mnr,ents Yz

and _ = t. Finally, setting _ = O_ cos _, _" = P{ sin a_", we obtain expan-
Sions of the following form:

-._ i ._ . _-- _ _ COS
', 2 C V'emO""e"mt sin (f.9,*+ i.V,*+ J.'_.*+ j,(o_*). (l&)

13
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Here, we have cos for xl - x_ and _k - E_; sin for Ym - Y.*and T_ - I"_.

Moreover, we also have there mI = [Jl[ m_ = [jm[ + 2_ (where kl
and ke are nonnegative integers). Also, _ and j_ are even in the expansions

for x_ - X_, Yl - Yi, {I - _i, and ?_I- _._while m_ and j_ are odd in the series
for {_ - {2 and _ - 'El. Finally, we have

m+2i--2_-li,+i,--i,--i,l+2_ £>0 (15),

in the expansions for xl - x* and Yl - Y_*,but

_+2i--l=li,+i,--j,--Ll+2_ _>0 (15')

in the expansions for {k - _-k*and _ - _*.

Let us now return to eqs.(1). First, we have a particular solution in

- which the {_*,_ are constants. This solution is obtained by canceling the
second terms of eqs.(1). In this solution, we have

. 2 !

:' _,_* _, _,*= _,* -- _,*--0

"- -With _ being the root of the equation

" d(P*--_.*)
_- a,%* - - o. (l_',

:- where, in the first term, we have put

: . : r,,*=_:*,=,1, = O.

The f_rst term of this equation is an odd function of e' and _I since the /_8

-: g_neral function F*- F__'is,even with respect to the variables e', _-I*,_I*,E2*,
T_. Thus, the quantity _:e can be expanded in powers of e and _. By only

_. writing the term independent of e'2 and _,we obtain [see eq.(h)]
nq t

_(' _ u-'d, l, 1,0

-- F,---%_-_+ ...,•. o,o,o, o

..., In the theory of minor planets, we can consider the ouantities e'• , e, and

1
_in -_ I as being comparable, in magnitude, with/_ (p being approximately =

.. = i0-a). The same is true for Pl, Pa, P_*,and P_*.

In view of this, for discussing the equations of secular variations (i),
c it is conv--2ientto put

' _,*=_+_'=V_(_.+_,), ,_,.=_,, _'=v_,, )"' (17
I

%

1L,.
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and to consider the constants e_ and Eo = K: /_ as well as the variables _' I]', J

_". _" as quantities comparable, in magnitude, with unity.

The new variables _' _' - _", , 5", satisfy the ecuations

d_' dH d_' dH

d_" dH d_" dH
_=_,, _,,----_,,

where

H = F* --const. (19!

We select the constant such that H is canceled out for _' = I]'= _" = _" = O. i

We will investigate the function H in more detail. For this purpose, let i

• . _ • - -_$ .

• us write the expanslon o_ the lunct:on F* - F6 mn the form of

:--with the conditions (Ii). li

We will here introduce new variables, by putting

_ _** = _k* + _ '_k*= ek*e¢:_ 'k', - :

_* =__k*-- V_ r,k*-----Qk*,- V--i._-.

-. By setting also n% = _ + _, jz = _ - _k, the expansion (20) can be written ,
as follows: '_

F*-- F_*= vF'_'P'"'t_"":+2'u_.'g,_*o.,,.2.,_*_.,,*_. (20')

_' The nonnegative whole numbers _is 81, =z, 8_ take only the values that satisfy

_--Zhe conditions (ii) which here become

;'_ a,+ _,=even,

,,, (22!

In view of this, we will put, in analogy with the formulas (17), i

,,, _,,= v_(_.+4), _,*= _(,%+_'), t
' ,_,,- v_;,/,,. _,,*_ _g¢', (2_

"_ _rom which, between the variables _' #' " #", , , _ , and the variables _' , _', {",
_: _", the following relations are obtained:

! 15 i
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_" = _,,+ V-=_,i", ,P"-.._" - V---i _,,. (2_

On introducing, in eq.(20v ), the expressions (23) as Well as the expres-
sion e' = /_eo, we will obtain in accordance with eq.(19)

• ._rtV_u_2i+_+a,+,_,+a2+_,.--4_i, _,,a, ��`�a,+_

' ;_ _ (25: .e. (_o+ ,;')_,(_.+ _,')_,_"_,_"P,,

'" Where, in T._,we must exclude the term constant in and the terms linear in _' ,
:: _' _", and _".

I "'

'" In accordance with our statement on the quantity _ (on p.l_) it is obvious
_ that the quantity (_o :eo)J can be expanded in powers of e and _. By posing
_ e'_ = _ and by expanding in powers of _, we obtain
i')

2O

R = d _,J_,-" _=0, I, 2,. (261
l--O

z_ Benotlng by p.(J) a certain polynomial in _ of the degree s. Obviously, we
-'_ = i, pl(°j =pm _°j = ... --O._hen have po(°)

:6 , - Therefore, let us expand, in the axpression (25) of H, the quantity (_o_+
• 2_ __! " _ ......

-_ _ m')°_x(_o + $')_ in powers of _', _', and _o and then introduce there the ex-!

_ _ressions (26) for _. Finally, let us arrange the expression H in powers of !
_" if,_', _', _", $". This will yield I

i

_ i H _ H(o)+ _, H(') + .,'H(_) + .... _,,,,H(,_, (27]
: . i m--Q

_ _ i I'_ (m) _ _ zlm'a"l''a"+"--'a'.,.'ft --':a,.,.,I-,,..... .'-_',,,"-,_" v, w'7' w". (28
) '_ I a'. p'. a"..O',

_ The coefficients of this ,_qoansion(28) are given by _he general formula

I_. ^'..', _m+m_--m 4q(ml--_'n'}

,__ _._p,., I#'I -_''''' • ", ' (29

_ where we have used, _or abbreviation,

_'_ m,--'a,+ _Y,, m'= d + #, m"= a" + _",

5o he whole numbers i, m, _, Bx, s in th sum (29) must take values that satis
_ he conditions

,i



i.>_], _.>o, e,_>d, :,>_g, s_>o,

(3o)
I_,-_, +&"-g'l_m+2i--2=2m + 2- (_,,+t_,+d' +f)- 2,.

The nonnegative integers _' , _' , _", _" in the sum (28) must satisfy the rela- _
tions

a'+ f + a" + :_'>2, a"+ f'-----"+eve., (31)'

' 2m + 2 = Id--g + d'--#'l + d + g + ="+ #' + 2k (k_>o)

where the latter relation is a dire¢t consequence of the conditions (30).
+,

: Equation (29S demonstrates that

. m,+,=_;,._,, . (32jH..-An),' ,-,-,',-,"

":" To avoid imagina_ variables, we will put in eq.(28): i
_') ' 1

/I' I
" + 9'=¢'eV-i+,', _' = ¢, ,-V-q.' (33i

' _ _" =-¢"e_a-"i"', _V"= ¢" e- V'-__,
2 .; ._ _.;

?

" from which it follows that

_+. _'=¢' cosco',_'=¢' since',

_ _"= e"cosd', _"= ¢"sind' (3&I?_h "

!
-%' I

_') Thus, the expansion (28) can be written in the form +I

++ _{(m) _ _ m, m', m" Ira, rtm,, ;,_ , H,,,/,, ¢ e cos O",d + f',d'). (35)
• , m',m"J'J,

_ the integrals m', m", j', j" take only the value'sthat satisfy the conditions

_" m,'=Ifl+ 9k', ,_"==1i"1+ 2_",
d!

,, =.,+ 2= li' + i"l+m'+ m"+ 2+ (36

++ =li' +f'l + Ii'1+ Ii"!+++E,

k" k, and _ are any nonnegative integers. This results from the re-_+ ,here k', ,

J_ Lations (31).

Let us, specifically, investigate the function H(°) For m = 0 we will
+", _ . . t = O, m" = = 0 or_,_ ave, because of the conditions (36), ex_her m : 2, J' J" .mt
_. _ J' = O, m" = 2, J" = O. Hence, , " -i

l [ rltO_ riO,2,0 Jl -- rfO, O,2_t;l !
_ ,.'a' ,='. -'-.to,o _ "r'.uo, o V • t

%/+ •
3

t +17 i

7, :_/:;+:' :,+:'+,-+_7_++.' =;+....... ,!',_, .... -....... -J+ + _, , , ,,- , {
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in addition, an application of eq.(29) demonstrates that i

rjo,2,0 _1,0,2,0 z_O,O,2 _1,0,0,2 1-,-,o,o= o,o,o,o, -'_u,o =" o,o,_o. (37

:, We will express these quantities by means of Laplace coefficients. For i
this purpose, let us investigate the terms of the second degree in the expansioi

, Of the function F_% These are (assuming e' = O):

_1 ; .F10,20 ,| .L_1,002 ,jo',o,olo,_, + o,o:o',oe,•

_ _he terms of the second degree of the secular part of the perturbative functionj

i according to Tisserand (Bibl.3) are as follows (assuming the eccentricity and jl

_ the inclination of the perturbing planet as zero): I
;_ I

!
,., _.::_ comparing the coefficients of the two expressions of the investigated part o_
_'; _{, we will find the following formulas: /_q

2_'_ Fi,O,2, 0 n,! 002 _ ,,,,
..(_ 0,0.%0 ' ' ' i.: ......==-- '-'o,o,o,o= -8- c , (38)

_ _here c('-) is the Laplace coefficient calculaCed with the value a = xa.''_','
_,>
_, Thus, on introduc_u¢ the notations

_, v; ,, -__ (39:_,.;_ _/o= -- _ -c(]), % .= + c(S)'

_* _e will finally have '"

_ i-t(o)= "o ,,_ "o ,,, (_.0]
_

_'_ _ith the fundamental relation
|()

,i , ,, (&l
_'o + _o = O.

_ _ection4.

_c_ We now have been returned to the system (33) of Section 3, which is a sys-
_* bernof the type (1) in Section 1. There are no variables in existence that cor-

_ _espond to x: , Yt ; the variables _ , T_ are denoted here by _', _' _", _".

_" _inally, the quautities v_ and _' of eqs.(39) and (&O) in Section ; correspond

_<, _o the quantities % of Section 1.

'.'._I These quantities _ and _' are not c,ma.1.1but they are interrelated by the
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identical relation (l_) of Section 3. Thus, the small divisors are identically
zero, and the corresponding arguments are multiples of the argument 2w' + 2_".

i

Again, the method given in Section 1 can be applied here. The new canoni-

cal system resulting from this method is readily reduced to one degree of free-d
dom. A complete integration of the system (18) in Section 3, from the formal I
viewpoint, is thus always possible by means of trigonometric series with two
arguments. In Bart II of this report, we will return to this integration method.

In this Section !$,we will integrate eqs.(18) of Section 3 by a less general
but more direct method which is also simpler from th_ viewpoint of numerical
applications•

r
i

We will introduce the varxaol_s (2A) of Section 3, which satisfy the equa-

tions

-- dH d_V_ rill i

" d_" -dn d¢,,__2V__dr_, . (1)
,]

_ The function Itcan be expanded in the form of

_ -,, i //= ,"_//¢'_, (2
- Where m-0

i .%

_ , _c,,,, _ =,,,,,_,+3,,_.,,+8,,,_,.,.,_,,,_,,.,.,,_,, (31

: Here,accordirg to our statements in the preceding Section, the nonnegative
_ _hole numbers a' , _', _", _" take only the values that satisfy the conditions

d + ,6"+ _'_+ _, __ , + = even,
,%

_m+_= l_,'-_' + _,"-_"1+ ,_'+,¢'+a"+W'+ _ (_'

2o:

q('

_ _here k and _ are nonnega_ive integers. According to eqs.(28) and (29) in
o "_'_ w_th respect to the variables eo, _ , $_,,' _ection 3, the functi n n , " " ' ' _", _",

_ iS a real and even polynomial of the degree 2m + 2.
i

Since the formula (32) of Section 3 is given, the function H exhibits a

/. _emarkable symmetry which is expressed by the identical relation 1

,_ H (9',_v',_", q/')=_HOP',_', _P",_"). (5

_,_ The function H(°) has the following especially simple form:
,I
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In v_ew of the cgnditions (A), the numbers _' 8' _" 8"

Following values in H_I) : , , , assume only the

4' #' a" #"

* 2 2 0 0

0 2 2 0

* 1 1 1 1

:, 2 0 0 2
:: * 0 0 2 2

:_ i 2 1 0 0

:" 1 2 0 0

! 0 1 2 0

'_ i 1 0 1 1

;'_ ' 0 1 1 1

':_ ! 1 0 0 2
,I

" 2 0 0 0

* 1 1 0 0

:_ t, 2 0 0
:, 0 0 2 0 __.
2-_ * 0 0 1 1

_ 0 0 0 2
,%t

_i Here, we indicated by an asterisk an_ combinations such that _' = _" -
" " _ _ i_'- _" _" = O. '_.'In all bhese comblnatlon_, we have _ - - -

"_ i We will now demonstrate that it is possible to formally satisfy eqs.(1) by
_, expanding _' _' $.,=, , _", in powers of _ and in accordance with the multiples of

.q,; the two arguments
"',' i w'= _'tt + _", w".= ,,"t, + _'.

Lc, ere, we used y' and y" for denoting +.woarbitrary constants and v' and v" for

,_ _enoting two still unknown quantities.

,, | We then introduce two additional arbitrary constants O_ _c og. We will

_, _lso put,,, _,o_ _,.eF=iw,, _, = _'e-F:.w', (61
I .... -':i. .... _-F---i,,,,

IS t - '

"_ I It is convenient to consider _', _':,_", _" as functions of the independen_
_(_ yariables _, $_, _', $_'inrt_aC o£ the _variablet:. We will then have

20 ! I

' _£
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1 d

with the s_nboMc notations

Dr , d d D" ,,d , d

Thus, eqs.(1) can be written _s .

2d(A'--;/c0_)
(-- VD'-- V'D" + ,/.) _' = da/ '

: ' (VD' + ,/'D °'+ ,,'o)_p' _ 2 d (It--tinned,
_ d¢p'

i " (-- ,/'D"-- ,/D' + ,,_)rp"= gd (H--HCO[)," d_"

:_' ' (_"D" + _'D' + ,_) _" 2d (//dr_HCO_);
i " I

-'_ 9r, still better,

t

:, --(v'D'+ " " ' '-- •D ) (qJo_) (_'--r'o) _p'@_'=- 9._p'od(lI-tt_°l),- de

" 2r,' dttt--H_°_) i

; (V'D"+_/D') "' " " .... "' -- (_o_)--(_' --%) _oCP = 2V_od(H'-H_')_

i. _t,lt l?
_' (4'D" + ,/D') (_.,:)--(_, --,,_)_"_p" = 2_d- (H--!d_°_) ': d,p" !

'_ In these equations, we will introduce the expansicns L_,

'_' ¢' = ,t'. + _,q/,+ _"'_'.+ .... :_#'_i, [
Z- t

., or,,= _, + _,o/;+ _,,¢',+ .... ._#"¢'i, I

_, _,,,=_g+ _,_.; �_,,_,+ .. = _-_,k_: (_ t

i

• *" - ,'_ + _,,"; + _,''. + .... _'_"i,

• _,, .... , ,, _.._ t,/__'_.

., _l¢_t, we expand the two terms rf eqs.(7) in powers of _. By equating, in the
_wo members of these equations, all coefficients of the same power of _, we ob-

_ _aln a sequeuce of equations by means o_ which the various coefflci¢nts of the

,_ _xpansions (8) can be determined.
!

_.: ] First, eqs.(7) are obviously s_tis,_ed for _ = O. !
i

21
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By equa_i:.i the -.oefficients of _, we obtain the foIiowing equations:

,..(-_ + D")(_¢,)--,.;,/_..f_= d_%
_ , dH"_

," l ' mtf __.

v.( _--D")(_,_4)--.,_.._.--z,r.-a;p" ,
(9)

•..(--D':+D')(,'.-'.,K)-,."e.",_"=2q_'a-I-I_,' "" "d_.

.... _,ndH"'
,-:( D'--D')(T:_f':)-- J";_.q', = drl,:

Let f be any expandable _,ction, _der the form

I= zc,p;"¢/,,p:_"_7'= zcm_. (I0)

(For abbreviation, we use i = _ #_5'e_"#_".) The coefficiemts C may depend

" in an arbitrary mariner on the two quantities _ = _u and _#_ = O_'z . Thus,

We can denote by
.

: the ensemble o£ the terms where _' - 8' = u" - 9", rand by /28

_ %,he ensemble of the r.erms whert_ _ - S' = a," - 8" = O° Finally, we put

i - {_)_-i- [/].

._ Obviously, f is a perio6ic l_Lnction cf the two argum_n.ts w' and w"; If] is the

. portion-of f w.hieh only includes the multiples of the argument w' + w"; finally

.= [[f]] is the mean va_ue of f, i.e., th6. term independent of -w' and w".
?

.,. : Since the conditions (A) or _Ise the values of the Table on p.20 are given,
_- it is obvious that

1,4,0 "2 ,. , I,_,2 , ,, , I 0 4, _"" CH,)]=[IS.)]] = S_:o,r._,;_Ho.o,_._.,_.._+//_:o'_,;'_,;._. (11)
+ o,o _Oo(P,T 0,0'1%_"o-

. Thus, eqs.(9) are satisfied by sebting

• . = --.2d!H(')] d[H"}]"' _- ¢.d_.
rjl, l,O , _"o O Z21'_2"^"'_' 0£/i'_0

.., v. _- q_,d_i _. dg):

--'.°.' ,,_," 2_',_;_,._o-,.0.,"_ _n_O, O ¢_el_ --- _"_'_0,0 ; '

")?.

' 22 !
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:d'H_" [q,'oq,_] d'Hm [_',q"i]

e'[i] = 2[a_;_a_i.'._;- + d,p-_,_¢_-'r;

a:H"' [¢';'t'_] a,a:, t%q.,jl,"" ,,""
+ dg,',d,l,: q'; + dO;dq,: '1'; t

(12,)
;d,H,', {q,:,t'_; d,m,, {,r;_;}

_'{i}= 2_a_; -,t,_.- + a<ae:,; ,e;

+ _a,H,,, h
+aq,'.g._: g,; dv.;a¢,; ,r. I

In the i_ there are no terms where the divisor _' - 8' - _" * 8" is zance!ed. /29
These terms b_:,ebeen eliminated by the selection of v_ and v{'.

Since _i) is an.even polynomial of the fourth de_ree in,eo, _, #',,4', #_,
it is ob_eus that _ and v{'are linear in _, O_2, _ __udthat the functions
(12') are polynomia/s of the fourth degree in,eo, _, #_, _', #_'having only
terms of even dimensions.

Equations (12') give only a part of the unknown functions. The quantities
[#o_x], [_V,], [$_|'], [_#_] st_!i re_.ainunknown.

In what foTulows,we _dli oYten find it advantageous to make use of the no-
tations

o' _I. a'+_. a"+_'

{_e,f;}= ,"._ --,'+ _'+ =.... _,, ,

¢ltq df I = ._ Z # ¢ r_l,a'+_",a" 0�"" _'* ,.; ,,'--_'--a" +tr'
(13

p _a'--,f, a"--_"
-_7_' _" ""'_'+*'_':+'_"

{q,;,/i}= ,,:_ ,,'-#-,,"+re' 93_,
a . r_ I, a'+2', _*"4-;_'

re0_,= 7;_ -_¥_-_ _'----_"-'"

and of other analogous expressions ._'[i] and _'[i} which are obtained from the
expressions (13) by writing everywhere _ instead of * and vice versa. Finally,
this will result in four expressions @"[i], _[i], _"[i], _'_[i]by permitting the

_ndices ' and " in the above-_efined fern expressions.

Thus, let us now compare the coefficients of _a in the two members of eachl
bf the equations of the system (7). This will yield four equations, of which !

;he fi_st reads: " i

,, ,,'.(- D'+D")(q,'._'.)-- (,,'.D'+ ,;';Z)'[+ ,,'.)[q,'.q,',] (lZ_)
--" ' '-_;e'[U,., ,. q,°,f, = _'.a',.

: qe have set here !

23
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.'' , . , ,dllI2; 130
,Io.4,-----( ,.',D'+,.;'D"+,.,)f':'o'r,_+ :'.'o,Z,';l;+ .'z,:..,d,I"o'

T', B'. = (-- r'.D'-- r"D" + r' _',_' _'"' + q': T' ' ' -" 2_,,'_d ll_'_'..... .o:,, _lj , d'/'_ ' (15)
21_,'''d l[_'-'__,":4" = ( r'_D"+,'_D'+,'_')[,l"j,f,_'? ,'"'qF' I_ +

•. , ,. dHl'-'_
,£_,B_= (--, ,D --, ,D , ":) ,f.: ,"""" _ -_ ,l:_lr'[I _ + 2,£: -d-/_2 ,

which are entirely known functions.

The second equation (lh) is obtained from the first equation by writing
everywhere ._,_, B instead of _, _, A and vice versa and by also changing the
signs of D' and D". The two last equations are obtained by permuting the in-
dices ' and " in writing the two first equations.

Primarily, it is necessary to determine the functions [#_, _[], [4, _[],
[_, _r], [_. _] as well _s the quantities _ and _ in such a manner that.all

the terms where a' - 8' - _" = 0 will vanish from the equations (lh). This
will yield four equations of which we give the first:

--(,,',D'+ ,.';D"+ ,.',)r,; ,_'1-- .; ¢',,r:

de'od'£'o I.,o '/,J q.; de'od _.,'_"'° '"

-- 2q'*d'IHqll 2-_; d'_[H_'?]"e," ',""=. -- • J r _,,f( rI_

q,;_q,;d_,,t_:.rA - ,f; de.,od,p,_tr,_,j [_,'oa;].

Since eqs.(ll) and (12) are given, it is easy to demonstrate that this
equation will take the form

-- 0-",D' -,-,_ D ) [¢.o,-/,,]-- (4II_,._'°[_'o,[',+ T'o'/',]:- (16)
+ "H_'_'_r,':.-'' ," ,,"" .o¢.=[_,.a.].- . ..... + l'o',,J+ '":)"' ' " '

"'. The first member of the second equation (16), not :_rittendo_, is obtained by
_hanging the sign of D' and D" and by permuting [_[ ] and [_ _[] in the first

,_ member of eq.(16). Finally, the first members of the two last equations are /31
obtained from the first members of the two first e_uations by permuting the
_ndices ' and " and by writing _ instead of _r.

i In view of the symmetry of the _unction H, which is expressed by the identS-
_y (5), it is obvious tha_ the functions A_ and _ as well as A_ and B_ are

-, permuted on permuting _ and *_ as _ell as _ and $_.

_," i Let us now form the difference of the two first equations as well as of
_he last two equations of the system (16). This will yield

* (,,',O'+ ' " .... (17-- ,,D ) [q"o'l",+ T,'/',] = [q"oA',]-- [,f,,B,],
"' i

• &

i_.. i . . . v . L..=,,,,.L . .... L | I _ j .
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- (,.'_o" + ,.',n) ["':,F;+ '/:""_1= [,..,,:.4.:]- [,r:n:].

' ' ] r_,,A.I r_,,,_.'lWe now make the statement that the functions [_As], [_ , L O _J, L,_O-_j
are polynomials in _$_ and q_#_ such that the second terms of eqs.(17) will
cancel out.

It is sufficient to examine the function

.,,,. ,Im:;][,:,4_]= ,:.'oq,",i_+ _ °,,,:.;j.

The function #_' [i}, according to the =econd formula in eq.(13), is composed of
four terms. Each of these terms includes, as factor, one of the functions (12_).

The expone/ats_' , 8', a", 8", of themonomials _ of these functions satisfy the
third relation of eq.(&) for m = i, i.e., satisfy the relation

4 = [,'--/'-'K'--8"[+ d +:_'+ d'+ #'+ 24 (4 > 0}.

For the exponents _' , 8', =", 8" of the monomials _ of the ether factor (for

example, of the factor ,r'.d,'-"_dq,J), we obviously have

2 = Ia'--,,_ + d'--,_"l + -' + 3' + d' + 8" + _k: (4 > 0).

Fcr the exponents =' , 8', =", 8" of the monomials _ of the product of the *_wo
__ factors, we thus will obtain

a = [d- 8' +""--;_"l + d+8' -Fd'+2':+ 2_ (k>O)

Or else, since the _' , B', _", 8" of this latter formula are positive, /32

6= I-'-Y + a"-_"l + I,'-Yl + I_"-_"1 + 2X:(_>__0}. Cl8)

: Let us now consider the l_arithmic derivative of the function _ s). Theexponents _' , 8', _", 8" of _~r and of its logarithmic derivatives _atisfy the
relations (&) for m = 2, i.e., also satisfy the relation (18).

In the function [_A_] where u' - 8' = _" - 8_'= even, we thus have

6= 41d--#l+ 2_- (_> 0)
and, consequently,

a'--#' = .',--_,,= O.

' This is the same for the functions C_], [#SA_], Cq_'_].

Thus the second members of eq_;(16) are polynomials in _#_ and q_*_.

t',_v aT ]
",, Since, in addition, the _unctions _:o-_J and [_] as well as [#_A_] and
: [_] are permutod on permuting _ _.n_, simultaneously with _' and $_',it is
- Sbvious that the second terms of eqs.%_ ,are canceled.
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Let us then assume that the unknown functions [*o_0s+ q_,_] and [*_q_ +
�_'*_]can be expanded in the form of eq.(lO). Then, the exponents in the

monomials _ of these functions will satisfy the equatiors

'",(_'--#') +. ,";(_"--_') = o,

(a'--#')-- (a"--_') = o,

from which it foll_ws that _' - B' = _" - B" = O. Thus, these two functions
depend only on the products _*_ and _*_, i.e., they are constants. We can
equate these to zero without restricting the generality since _ and D_ are
arbitrary quantities.

Accordingly, it is obvious that we can satisfy eqs.(16) by putting

• [[¢.A',]j ,.:= Ire'A,]]
"' ,/. e'. ' _._.-'

[¢.¢,]= [,r.,P,]= [,'_,Y,]= [,J._,]= 0

'A' " e: Evidently, the quantities [[_ =]] and [[_A_]] are polynomials in eo, _*_
and _. The degree of these p,ol_,omialsis at most 3, according to what we

• %_I " • f | - • • •

know of the degree of _z) and H • In addition, [[*_A_]] IS divisible by

-, and by isdivisibleby and is,divisive
by *_. Thus, a and _ are polynomials of the second de_ree in e_, _5$o,'_6'_,""

• i.e., polynomials of the second degree in _, p_, and P_.

We then will return to eqs.(l&), All the terms, except the first, in each
' equation of this system are now known. The known terms form even polynomials

_',, of the sixth degree in eo, _, *_, _ _; in these polynomials, the exponents
". _', 8', _", _" of the monomials _ satisfy the inequality

"" "'-- z_'--" + If' '_ O. ;

._ I 't !

Because of eqs.(l&), we give the functions [*_], [_6_=], [*_], [_*_] as
" even polynomials of the sixth degree in eo, _0, *_, _', *_.

_ It has been demonstrated that the wholly known terms of the first two equa-
_ _ions of the system (iI_)as well as the wholly known terms of the two last equa-
_ _ions are permuted on permuting _ and #_ as well as _' and _. It must be
_: concluded from this that the functions [*_] and [_*_}as well as [#_'] and

: [_*_] are permuted on permuting _ and _ as well as _" and _'. Moreover,
[*_] is divisible by *_, and [_#_] is divisible by _b, [*_%_] by *_, and

'_'- i Let us now compare the coefficients of _3 in the two members of each of th&

_quations in system (7). This will yield four equations, of which it is suffi-_
'" _ient to write the first:

_, , ,,;(-D' " ...... + D )(_d[,)--('",D' + ,,';D"+ %) [_._.]

' i -, -

i 26
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Here, we denoted by _ev (_T• A_',B_ in the three equations not given here) the
wholly known polyno_dals which are odd and have the seventh degree in eo, _,
*_, _, _. The quantities A_ and _ as well as A_ and B_'are permuted on per-
muting_ and _ as well as _ and *_.

], ['._2]• [*o_]and,[_*_]Primarily• we must select thefunctions [*_ -' ' " "
as well as the quantities v_ and _' such that all the terms where _' - B - _" +

+ B" = 0 will vanish from eq.(19). This will yield four equations, analogous
to eq.(16). It is sufficient to write only the f_rst:

1.4.0
--(,,',D'-4-,:TD")[_/.,f',._--(4Ho,o [,!t,p,+ ,f'o_,]

, .... (20)+ 2H_:_'[,:_',r; + _._,] + ,';)'/'_,r'o = [_,'.A'.].

The first term in the second equation (not given here) is obtained by changing

the sign of D' and D" in the first member of eq.(20) and by there permuting
[$_] and [_#_]. Next, the first members of the two last equations are ob-
tained from the corresponding members of the first two equations by permuting

• v . • • 1.4_- Loo_.
the superscrlpts and as well as the coefficxe_ts H_'S'and H_ •

.- Let us denote by
:

•--VA'_, -B _)_, 2"A"_, -_'B'_

the expansions of the Four functions

[_,'.a'.], [,f.s'.], [_AD. [,p_B_]

in powers of _, *_• q_• *_. The exponents _' 8' _" _" of the monomials

then satisfy the condition

a'-- f-- d' + #" = O.

Let us now form the difference of the two first equations of the system (20)
and also the difference of the two last equations. This will yield

: -- (,,;D' + ,,.D ) [_.,/,, + _. q,.] =- [_PoA,]-- [,/foB'.],

' '' ........ r."A"_ (21-- (v';D" + ,,,D ) [$o,#,., '[o _, ] =... --., -- [_; B.].

: The second m_bers of these equations change their signs on permuting
.- _nd*_, as well as q_ a_,d ,6'o From this it follows that we have no terms where
,, _"--8 = or" - 8" = O.

. Thus• the following conclusion can be drawn from eqs.(21):

@

, 1 " A'--B'
[*'0'/, + %*;] -- _ _ ""-_-.+:_ _, (22,

27
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A"--B" ._
L_._, t�Ð�œ�_;]= _+ .;

We could have added to the second members of these equations any functions that

depend only on q__ and q_tg, but such functions can be omitted without restric_-
lug the generality since Po and p_ are already arbitra_ quantities.

Let us now put in eqs.(20):

w ii !

,'. [[_._'.3] ,,== [r_ A.L

These quantities are polynomials of the third degree in _, _ *_ and _'0_.

,, Now, eqs.(20) can be integrated. On setting, for abbreviat:on,

, ; ;{, _.i,¢o _ A'--B'
.... _o _ (a,_p,)-----3

:_ . 9Ht_-._ A"--_'", +- o,oz.,(d--_-:__--_,..

:: _ A': _'
__ i Z'f_- 4HJ,o,4--

m

+ ,_ I_'--p')"_'
[

-_, We find

, , ' l A'

,r'._. z' ] , _S':: [e'.g".]= 1,.,+ .;}. , +,,;_ _.,+y _z,

_- ; [¢_;,e.] 1,,_ + .', + ,,.x_-.,,+_,, '
_c) i

,,'r*I_ [_'._';1--{/;,+-_.)._ ,-$,,;__d,r+te _.
B"

t

'-' in the s_s _ , the terms where if'- _' _-_" - _" = 0 must be excluded.

,', ! Accordin_ to the above statememts on the second members of eqs.(20), it is

'-"_bvious that _ and X" change their signs-and that [*_ ]-and [_ *_] as well as

: _'__*_] and [_'_,'_]are permuted on permuting _ and _ as well as _ and *_.
") _rom this it follows also that [*;_ ] is ,livisibleby *_ ; [@ $'_] by _ ; [t_']

_',' ty t,_'; and C_t_] by _.
') ] •

_-: Obviously, we can throw the functions (23) into a rational form with the

k 1
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denominator (vl �vl'_,since the numerators are even polynomials of the tenth
degree in e_, _, *_, _', _.

It is now possible to integrate eqs.(l?) and to derive from these the ex-

pressions for [_], [_*_], [*_], [_"$_]. These functions, respectively,
are divisible by *o, _, $_, _- The two first expressions as well as the
two last expressions will be permuted on permuting _ and *_ as well as _'
&nd *_. Finally, these four f_mctions are fractions whose denominator is (v_ +
+ v1')_whereas the numerators are even polynomdals of the twelfth degree in ec,

Evidently, it is possible to continue in this manner and to successively

terminate the various coefficients of the expar_ions (8).

It is obvious that _ and v_ are rational in _, _*_, _'_; that _, *_
_, $_'are rational and odd in eo, _, _, _', *_';and that the denominators /37
of all these rational functions are powers of the quantity "_I_ v_.

It is also clear that _ and _ as well as q%"and *_ are permuted on per-
muting _ and *_ as well as _' and *_. I

: !

"" Section _. I• I

Below, we will demonstrate several general propositions on the quantities i
2, I

- (13
Jk i

-'" and on the functions I

_ '"'_" "_'_'D, {'/'_'pl; ',r_,Wi}, (2)_._ o'!_./' IJ'o ,

.I
, _ ,r fr ,e ,ft

_ [q,o,tj,],[,r_k], [q'.,ek],[,po¢_], (3)

,_'._,, {,Fo,_i}

' _.... I,#' I_'I:, [,l.,t_] ['P'o¢'i]['to'_,,]- "'0 _'" (5
,,, ,p_-, ,/),. ....._--, ,/_;

_ _defined_n the preceding Section.

'[ i ,Let us designate as the degree cf a rational function the difference in thi

'_,,__egrees of the numerator and the denominator, i
:. The first proposition is as follows:

, Theorem i. The quantities (i) which are rational in _, _ _ and _'*_' !
'_> _i.e., in _, _ and _'_) are at most of the degree 2k with respect to eo, _, I

_( _, _, *_. For k = i, 2, 3, no denomln_tor exists. For k > 3, the denominato_
! has the form (_1 + _)' where s _ 2k - 61. The functions (_) and (5) which are |
<,! _ i I

29 i

l
u

i

/

/}
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rational in eo, _, *_, _, *_ are at most of the degree 2k + i. The denomi-
nator has the form k_ �v_)j where s _ 2k - & for the functions (&) and s

2k - 2 for the functions (5).

The (4,_onstrationis performed by induction from i to i + 1. Let us,
therefore, assume that the theorem is true in the case of the quantities (1)

and (&) for k = i, 2, ... i and in the case of the functions _5)"for k = l,"2,
•.. i - I; let us demonstrate that this theorem still remains true after in-
creasing i by unity.

A comparison, in eqs.(7) of Section &, of the coefficients of _I |_$8
the two members, will yield four equations of which only the first need be given:

: '".(--D'+D")(q4_i+,)--(v'.D'+,q"D "+ ,,'_)[_o_]

'' : --,"_+,_'o'/.--9".@'[i]= _ A}+_. (6

_, We will first demonstrate that the rational function A',+i is at most of the de-w
z,,;_ree 21 + 3 in co, _, $&, _, #_ and that the denominator inclades v, + v_ at
i: most to the power 2i - &.

: _ In fact, _A|+_ primarily encompasses the terms

" II

(,,',D'+.,D + ,,',){_°_:)?'_ H
l(,

I ,r 1! t f ,

: + (v.D+ ,,,D+ ,,.)(_.¢f,_,)+...+ (v_D'+,,_D"+ _)(q,'j/) (71

' ,,, According to the assumptions made, these terms are at most of the degree 2i +t

: _nd, in the denominator, include vI + v_ at most to the power 2i - &.

:_ Then, the following quantity will be encountered in #oAi+_:

-',(_

_-_. see the second formula (13) in Section A]. At most, this quantity is of the
_. degree 2i * A and the denominator includes the quantity _'_+ v_ at most to the
%_ _ower 2i - &.

,: _inally, *_A_+: contains terms of the form (to within a numerical factor)

dlf2(m'+n'+m"+w')]_(m)

" _.(a,t,)_ (_¢,,),(_,t.)-_ (_,o)_,

_'_. _ith the condition ',

+,..... (zos._. k+"k) + m:i + Ik.,l

• i

t ':
• - a_{_:,..,-_...',.
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and also the condition /_'9

2"(m'+n'+m"+n") }m>2, (ll)

provided that i > I, which we assume here. The degree of the term (9) will be :
at most

i--I

_(2k+,)(,_+n'k+""""'_k-k,-_- |
k-I

\+ 2m + 2--2"(m'+ n'+ m" + n")_ 2i+ 4.

\in addition, this term has the quantity _I + _I'in its denominator, raised at
most to the power

i--I

Z f Pf,- (2k -'.') (m_ + % + m" + %) =
_ k-I

. = 2 (i + 1 --m) -- 2 2 (m' + n' + m" + n") ! 2i--4.

:: Thus, the function A_+I is at most of the degree 2i + 3 and, in its de-:= nominator, the quantity vI + enters at most at the power 2i - &.

After this and since (by Section _) the method of formation of the quanti-
_ lies (I) for k = i + I, of the functions (5) for k = i, and of the functions (&

for k = i + 1 are given by means of eqs.(6), it is obvious that these quantities
*• and these functions have exactly the properties enumerated in the statement of *
:_ £he theorem. Thus, assuming that the theorem is true in the case of the quanti_

_les (i) and (&) for k = I, 2, ... i as well as in the case of the functions (5)

for k = l, 2, ... i - l, _;ehave demonstrated that the theorem remains true also
on increasing i by unity. However, according to Section _, our suppositions are

_ _xact up to i = 3- Thus, theorem 1 is proved.

' It is obvious that the functions (2), ... (5) can be given the following
_ 'form:

•_ _ t_t r r tr rt . ir

_ ' ' _'t_'._here C are rational functions in q'55o and For abbreviation, we will /_0
_ Set, in a given expansion of the form of eq.(12),
[

i s_If+Yl, T=Ifl+If'l.

'_ Consider any monomial in _, *_, q_, *_. It is evident that, for such a

tonomial, the values of S and of T cannot exceed the degree of the monomial.

Let us study particularly the polyngmials H(') defined by eq.(3) in Sec-
_ hion &. For these, we have the frequently used relation:

_' _+I'< 2m+_.

,- , [
,%
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Since we always have S g T, the following expression is obtained for these polyS
nomials H("_ and for their logarithmic derivatives:

,-_<m + 1, T<2m + 2.

In view of this, we will demonstrate the following p_position:

Theorem 2. For the functions (2) and (3), derived in the form of eq.(12),
we will have

:'* S < 2k. (13

_, For the functions (3), we will have S = 2k provided that k is even and then _nl_
_n the terms where

, j' =j"= 4-k. (1L,!

,_ For a function (2) we will have S = 2k if and only if k is odd and then only fo_
_" the combination (j' . J") written in the Table (15) below the investigated func-
'" tion:

:" . (-k-1,--k+l), (k+!,k-l), (-k+l,-k-1), (k--1, k+l). (151

2_, ' The proof of theorem 2 is conducted oy induction from i _o i + i. Let us
2 _ssume that the proposition is true for k = l, 2, ... i in the case of the //1
2,_ Cunctions (2), and for k = i, 2, ... i - i in the case of the functions (3). _-
:, _ke the statement that the proposition remains true also on increas_:!_i by

_ity.

•, '_ To demonstrate this, it is necessary to investigate the function *_Ai+x''
....which appears in the second term of eQ.(6). We state that, in the monomlals

of this function, we have S g 21 In fact, the function #_A_+: is composed
of the parts (7) and (8) and of a sequenlceof terms of the form (9), multiplied

( by numerical coefficients.

_ For the part (7), we have S _ 21 in.accordance with our suppositions.
49

.' The term of the formula (9) can also be written as follows (to within a

_ _actor which depends on _*_ and _'*_) : I.
l

_ f # rl Ip

• I I _1 w f _1 I F_ I_ ff$1 fll,, (q,o,_,) (,_,q,,_ W.q,,) (,_q'D ...

_,,, _o ¢_i-d (9"0'_'•_-v'_%-_t,t,"¢d',To.__,,_'_-' __0_-_

' i (l_:, ,_n. _ , _n_ ,,2m. .-_n" l+._(m'+_'+m"+n'l T_(m)
,,_ t _Po'to _0 *_o 'Po ___............ _ .

_,, or this term, in accordance with our as!sumptionsand in view of the condi-

1 32 iI
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tion (10), we have

S< _ 2k(ml _' ," '+,k+_ ,k+ ,_) + m + 1 =
k-l

=2i+3--m<_,_ ' 1, si m>l.

if m = 1 in eq.(16), the order of the derivati" e of _x_ will be at least 3.
Thus, in the polynomial which then appears in the second line :f the expres-
sion (16), no terms of the second degree are present. For the terms of the
third degree, we have f = 1 and, for the terms of the fourth degree, S = 0 (see
the Table on p.20). Th_ 'for m = i, we will have in eq.(16):

:, , k--l

_ Finally, let us investigate _he part,Irate'[i_ c'fthe function *oAt+,. ___
: According to the second formula (13) in Section _, this part is composed of fou$

.:.. berms, each of which is the product of two factors. For one of the factors i
,T Which is one of the functions (2) for k = i, we have S _ 2i. For the other )

[actor, as for _x)
, we have S _ 2. Thus, in the ?h_ion (8), we always have ,!

S < 2i + 2. To have there S = 2i + 2, it would be neoessary to take, in H(z),

the term where S = 2 and 8' > O, i.e., the term _°_#_s and, on the other hand,
! t .t + n

_n [%_,), the terms were j J = -2i. However, according tc our asst_ptions,
!° bhere are no such terms in [_*_] [See the second column of Table (15) for

k = i.] Thus, we have S _ 2i + 1 in the function (8) and also in the function
'- _t at

)') t ,

_ In view of this fact, we will have S * 2i in the function [GAt+t] where S
_ always is even.

N..xt,in accordance with the method of formation of the functions [$_
• !

_ and [_c_i+:], it is obvious that we will have S _ 2i in the first of these func-
_, : _ and then S _ 2i + 2 in the second function.

! in the function [$_ ], the qimntity S is divisible by _. Thus, we will

. _here have S = 2i if and only if i is even and th_ only in the cases in which

_,, _' = J" = +i.
;

_*_ i In the function {_o_+I), the terms where S = 2i + 2 can originat_ _nly in

_, _he part

_ [ 4H ',_°
, _____72,0 -# _ - ,

,, ) ,#.¢,,o_o t_.,_'_] (17

_-' _f the function *_' [i] in eq.(6). It is even sufficient to' retain, in the
,_ _unction [_*_ ] of eq.(17), nnly the term where J' = J" = -i. However, such a
".' _erm will exist only if i is even. Thus, we will have S = 2i _ 2 in the func-

' ' =-(i+ I) I_ ;ion [*o_t+_] if and only if i + i is o_d and thus only for J'
_'_ md J" = -(i + i) + l,

i I :

,#
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Analogous results can be obt_ainedby permuting, in the preceding demonstra-
tion, the symbols • _.d * or the superscripts ' and ".

Thus, assuming that the theorem 2 is true in the case of the functions (2)
for k = I, 2, ... i and in the case of the functions (3) for k = i, 2, ... i -
- I_ we will have demonstrated that the theorem remains true also on increasing

I by umity. Moreover, our assumption is exact for i = 2. Thus, the theorem /_3
is proved.

It is now easy to demonstrate the following p:_posltion:

• Theorem 3: For the functions (&) and (5), derived in the form of eq.(12),
we will have

T<_k+ l. (18)

!

-The demonstration is direct for the f_nc_ions (5)- In fact, we have T = :
= S _ 2k for the functions (3), from which follows the relation (18) for the
functions (5)•

In the case of the functions (&), the proof is cond,,ctedby induction from
i to i + I. Let u_ assume that the relation (18) is satlsfied for these func-

tions at k = i, 2, ... i and let us demonstrate that it is thus also satisfied

fork =i * i.

., ' For this purpose, let us retL'rn to eq.(6). Since the, formulas ,(13) of: - Section & are given, we .haveT < 2i + 3 in the functions [i] and # {i} which
I

_. latter is a part of the function Ai+x. In addition, in the part of A_+I which
is obtained on dividing the expression (7) by *_, we obviously will have T -_

. • _ •

. _ 2i + i. The only item to be xnvestzgated are the parts of A_+, which are ob-
Lained from the expressions (9) by omitting there the factor %_. For these

_ part_ in accordance with our asstm_tions and in accordance with the data ob-
_ rained for uhe functions (5), we will have

r__v(o_k+l)(._+._+m_+._+

"" + 2m + 1--2 (m'+ W + m" + n")= 27 + 3.

,. Thus, we will definitely,have T _ 2i for the known terms of eq.(6), after
:_ ,_ having divided them by #_. it follows from this t_t the relation (]8) is ful-

: filled for the functions (A) also for k = i �i.However, this relation is

_lly satisfied for the functions (&) at k : I, 2 since these functions then at?
:-. polynomials of the third resp. fifth degree. Thus, theorem 3 is proved. 1

'" i B_Iow. we will need a more special proposition which we will demonstrate i

,. here: I
• ! I

_ _ Theor,em,4: If k is _ven, ho term with j' + J" = 2k - i will exist in thehi_
_ction *_ and no term with j' = -(_ - l) in the function _¢_'.

_, -..................... , :____
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For the proof, we put k = i + i, where i is odd.

It is sufficient to demonstrate that we have j' / 2_i+ 1 in the func-
,t t

tiens V_@'[i] and _oAi x�whichappear in eq.(6).

• , , j, j,,Moreover, in the function _o_ [,i],we have + / 2i + I since, because• !

of i bezng odd, we have there S = lJ + j"l _ 2.%.

&t !
In the part (7) of the function _-Ai.,, we also have j' + j" / 2i + 1 since

we always have there S _ 2i in accordance with theorem 2.

, , To find the terms where 3 + J" = 2i + 1 in the part (8) of the function
_oAi+,, i.e., in the function _@' [i] [see eq.(13) in Section &], it is suffi-
cient to consider, on the one hand, the terms of the functions [#'._I], ...

[_$_] where j' + j" --2_%and, on the other hand, the terms of H(I) that devend
on #_ m'.dwhere j' = i. (In fact, for the terms ._i) that depend on $Io,
we never have j'+ J" = 2.) Moreover, according to theorem 2, it is only in the

two functions {,_,.$'I_and [q_$F] that we can ever have j' + j" = +2i; in the ex-
pression of _@ [J3, these functions are accompanied by factors where J' + j"

x�inaccordance wi_h the Table given on p°20. Thus, in the part (8) of the
t

" function $_Ai ´never have j' + j" = 2i + I.

t !

Finally, let us pass to the parts (9) or (16) of the function _oAi+1. We
ku_ow(p.32) tb_t we always have S < 2i + 3 - m. Therefore, it is sufficient to
consider the two cases in which m = 2 or 1.

In the case in which m = 2, it is sufficient to consider the terms of _2)

that depend on %_ and where we have J' + j" --+3- However, such terms cannot
exlst in virtue of the conditions (&) of Section _ (for m = 2).

• " (1) ,
In the case in which m = ].,it is suffic'_entto consider the tergksof H

that depend on o and where we have j j --2 or 1. However, in H t_ere iSi)
no term depemding on to'where j' + j" = +2. In addition, the terms of _ that
depend on #_ and where j' + j" = +i, aro as follows:

H, ,,o .2,/,, H' ''.....,'._ 'f. + "'i:__._. •

Using this expression of H(i), no functions _ #_ ,an_d_'$_"will exist in the /_5
" expression (16). In addition, in the functions _oq_ and $_" it is sufficient

_o consider the terms where j' + j" = +2k. Moreover, according to theorem 2,

Such terms will exist only if k is even. However, in accordance with eq.(lO)

_or m = l, it is impossible that all k can be even since i is odd. Thus, int !

the parts (9) of the function _oAi %°will never have J' = 2i �1.

"i ! We have demonstrated that j' + J" / 2i + 1 in the wholl_ known ter_ of
_.(6), provided tha_ i is odd. It follows from this that J + J" / 2i + i
_xists also in the function [$o_ i is odd. For reasons of sy_netry, we

': Will also have j / -(2i in the function {_ |i is odd. Thus,

_" _he postulated theorem is proved.
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ection 6.

Let us now substitute, in the expansions (8) of Section _, the quanta.ties
_, *_, _, *_ by their expressions in accordance with the formulas (6) of Sec-

tion A- Then, _' and _" 'cakethe _orm of the exponential series e v-,_w.+_

with zeal coefficients. The functions *' and *" are imaginaries conjugate with
_' and _".

In view of this and _ accordance with formulas (2&) of Section 3, the
quantities _ and become cosine series expanded _n multiples of the ar_1-"
ments w' and w" and in powers of _. The quantities _' and _" will be repre-
sented by sine series formed with the same coefficients that appear in the ex-
pansions for _' and _".

Let us now introduce instead of the parameters p_ and p_, two new para-
meters ¢' and e", by setting

_'=v;;e:.. _"= v:,e.." (l)

where ¢' denotes the modulus of eccentricity and ¢" the modulus of inclination.

The quantities P_ and P_ are comparable to unity. We will consider the

. small quantities e', ¢", e', and/_ as being of the order of magnitude of one.

Let us set, in addition

,_=,,(,,' + ,,;). (2)

The quantity 6 is homogeneous and linear with respect to e'_, e"a, e's , and _

where the coefficients depend only on the parameter xz. Thus, 6 is a quantity
of the order of magnitude of two.

No_, since the formulas (17) of Section 3 are given, the general solution
of eqs.(1) of Section 3 takes the form

e,_* cos + z_i',#', cos(j'u2'+ _"w"),
k-I

"- '_ ,,i('k+l) #"t_"),,;,*.= _'sinw'+ z3-'_.ed,,sin(j'w'+
k-!

(3
%"'**" ;/"w"),_=*= d' cos w" + _ _,_,, cos(j'w' +

/¢-1
l

,_,:k+,) i"to"),;,*= ,".,i,w"+ (./',,,'+ .
f ' k-I

"_'J i,

")' fhe quantity _:e' , defined by eq.(16) of Section 3, can be expanded in powers

_
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of e'"_and _°

.(2k#1 ) r_(2k+l)

The coefficients Aj:j,, and o_ y, are of the order of magnitude of 2k +
+ i. They are rational and homogeneous functions with respect to the quanti-
ties e', e", e', ._. Only even powers of/B are encountered. The denominator

is a power 6' of 6 where the superscript s is 2 0 and _ 2k + i - 3 if j' - j" =
= _I but is _2k + i - 5 if j' - j" / __i. Here, the plus sign refers to the co-
sfficients A and the minus sign to the coefficients B. In view of theorem 3 on
P-3A, we have the inequality

Ifl+If'i<_-k+J

in additlon, _" is even in _I and T_ but ,,ridmn _2 an,d _. The numerator o_
(Sic+l) C2k+l J • . ! IJ'| .|J"l f -
A,,,,, and B,,,- obvlously co_tslns the factor ¢ • ¢ if j * i" is
e_ • w_ • f t ! " i! . .f . . . _. .

odd and the factor e ¢ IJi . ¢.,J 1 if j + _" is even. The other factor In this
• . . t _* tl_ t 2

numerator Is a polynomal homogeneous mn¢ , ¢ , e , and _.

Let us note that we have

.AI2k+I) D(2k+l|
+,.o -- O, L,,.+, _ O, (/_= 1, 2, --- oo)

since we always have assumed

[[,•rk]]- [[_0_i]]= [[_'.,p_]][[,p.q'D]o

during the integrations in Section &. In addition, the coefficients

_(2k+l)o,o (k = l, 2,... _o)

cance.i out at e' and ¢" since the special solution obtained by setting s' = s" =
= 0 must coincide with the solution _ = _, "_ = O, _ -- O, _ = 0 investigated
on p,l&.

We have seen above that ._, _, _i',*_'are polynomials and that the di-

g_- ,,_ . ,

v_sor _ + _{'appears first in the functions ['_"J/,]['_".J/".]_-o_,J[_Po_/.] Thus,
,I"o ' '/o ' -'Y;_' _'.

the fractional inequalities of the variables _*, _ are at least of the order

Of magnitude of five. The fractional oefficients of the order of magnitude of

fiveare - "
Let us now pass to an integration of eqs.(2) of Section 3. We have alread_

nentioned that the second of these equations will simply yield

", _* - _. (

_ The first equation is written as

h •
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dt dx_* _ dz,*

AS derivative of the function F¢ - Fo_, we have an expansion obtained from

the s_ries (20) in Section 3 after differentiation with respect to _. Let us

here introduce, by means of eqs;(21) and (23) of Section 3, first the variables
_, ** and then the variables _ , _ , _", *% Next, in analogy with eqs.(19),
(27), and (28) of Section 3, let us put

I d ,_., _, ,,_"_°'°'=a= _V'G_% (6)
-,dx._r--_--. ro,_o,ol _-o

G(ml _ r,m,a'+y,,r' <�`�h�,.'a.,yd,'*",f_rY'= _.-_.-_,_,,-,,,? _-'v -.-• (7)

The coefficients G_,_,.'"are polynomials in eo. They can be derived by means of:
the formula

_,m',m" /a,I _..,m,,."l:,laF;.o.:.,. _+,,,,_,,,. (8)

:- in complete analogy with eq.(29) of Section 3- The relations (30) of Section 3
are also valid for the expression (8). The nonnegative whole numbers u' _'• 2

_", _" take only the values that satisfy the conditions

- " "'+ f= _'_ (9)
:. _-_+ _= I¢-:'+ d'-fl+ _'+ f +_"+:"+ 2k (k_>0)

- analogous to the conditions (31) of Section 3. Obviously, the function G does
" ' ' m" ,".not change on permutLng _ and _ as well as and

-, In the function G, let us now introduce for _' , *', _", *" their expan-

sions (8) of Section & and let us arrange this series in powers of _. This will

yield

.. G= = (lO'.
m.-O i-O .

• : In view of this, eq.(5) can be written as

• dy,* dF ''_°_°o,o,o,oi x ,4 . .,Z,,._#,L (11',
-di= ' -' a_,-* ' ,-o

" "; " ' " ( ) It is obvious that g(t) is even
_ We will now .nvestlgate the function g "i" ,

" _ith respect to eo, _, _, _, *_ and that g_ _ _oes not change on _erm_ting
' and:*_ as well as q_ and _. It is also obvious that the function g_t_ is /_9

',' composed of two terms of the form 1

38
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,....: ..," ,.'; d"_''+"'+"''+""_G_"'_ (12)

,r',''l',"t,''I¢_'(_,t_)''(d,Fo)"w(_,t_'";(aq,_)_;_

multiplied by certain factorials. The nonnegative whole numbers _, _ , _", rk"

satisfy the condition
i

_ k(,,,i+hi+,,,i+ ,c_)+ ,.= i (13)
k--I

Let us first define the degree of the rational f_rction g(*). Since theo-

rem 1 of Section 5 is givem, the degree of the general term (12) can be at most _

i

m' "+._)+_(2k+ l)(_+"_.+"k

+ 2m+2--2_(m'-+.n'+ra"+n")=2i+2.

Thus, the rational function g(i) at most is of the degree _ + 2 with respect

• Let us next investigate at what power the quantity v'l(+ _ enters the de- _:
nominators of the various terms of the rational function g I) , put into the i

form (12) of Section 5- We state that this power is at mesh 2i - 2 for the

terms where j' - j" = ±i and at most 2i - A for all other terms.

In fact, in accordance with theorem 1 (on p.29), the power of u_ + u_ in

the denominator of the expression (12) can be at most

i

_ (2k-9)(m_+ .'_+mk''+._)=J..

k-I

----9i--2m--°-2(ra'+ n'+ ra"+'n").

Several cases must be differentiated, in accordance bdth the value of m and

with the order T. of the derivative in eq.(12), i

If Z = O, the expression (12) reduces to G(*) and will have no denominator

all.
" If Y.> i, the power of _ + _' will be at most 2i - _.

: If Z = i and m > O, the power of v_ + v_ will be at most 2i - A. !

': i If T. = I and m = O, the expression (12) is reduced to

'" i ,dO'o* ,dG_°_ ,,dG_o_ d_ '

_ Moreover, in accordance with _..(7) and the conditions (9), the ..nmetion C,tel

' I
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has the expression

0,I,0 l _,O,P,,.O ._r .,/ _ 0 2 ..i+.
a (°)= O_°'° + G,.o (,p -I-_) -I+ -,o.o 'r '," + ,,+,o'o'.+f ,+-•

:

In addition, the general formula (8) as well as eq.(38) in Section 3 showed that

dFl,O 0,2 dFi, o,to
_o.oO,2 _o.o.o o,o.o,o Go,_o= --_-_-++--- _a_:,*= - o,o •

Thus, the exp.ression (l&) becomes

O.l,O , _0,2,0._, t ' ' " " " "G,,o (,&+ q,',)-+ + q"o_mo t_VoT+ O_--t/.'.'Pi--'_.q'i) •
,,
t

• . • Ci) • •
Thls is the part of the functlon g which, in the denominator, could include +'

'- the quantity x,'x + _ raised to a power > 2i - &. However, we know that, in the i

i" denominators of the functions [$_ ], {_$I ], [$_p], [_o$i], the quantity+_ +
" + vr enters at most at the power 2i - &. Thus, ;he part of the function g_i; i

-" which, in the denominator, could include the quantity _ + vr, raised to a power:
'+ > 2i - h, will simply be

f_ + •

['p'.+e;l
-- .: ¢;_:+'x-_. + _'. _ + (151

• : O,2,O , , , ,, ,++- + Go,o ([q,.,p++t; q'+]-- [tp.,&+ 't: q'_])- :+
.,+,.

-,, Now, we state that, in the denominator the _+ :ction /51+
J J

-+ fq-"o't_+,t;,l_]-[,:.,,,,,,+++,_ _,.., (1uj+". - tl ..

+-,, the quantity v_ + ,_r enters at most at the power 21 - i- _n fact, let us sbart
_, from the first integral

_- H = .+dH(_ _. const.
T"

- i-O

u++ _.fthe system (I) in Section &. The functions H(') are defined by the formula
t I 111II,u [3) of Section &. On substituting there the quanti+ies + , q, , +", . by their

+_ _pansions (8) from Section & and by arranging the series in powers of _, the
• Integral in question is written as

.._Hm_ .u+h¢_)= const. (17]
,(, i-O i-O

,', de can+argue on the function h(1) as we had done above for g(t). It is then
+" sufficient to repla_e_everywhere G('1 by H(;). _Thus, it will become obvious
_'+ _hat the terms of h'", in which the quantity v_ + v_ may enter raised to a

_i power > 2i - _, are contained in the expression



Ho°:_'°(['/".*?i+'/.'/:'_1-['/';;*/;+'p_'PD).

Evidently, because of the investigated first integral, tileseterms in which the
quantity v_ + u_ enter, the denominator raised to a power > li - _ must cancel
out and vanish (since .hey are not constant). Thus, it is obvious that, in the
denominator of the expression (16), the quantity v_ + v_ enters at most at the
power 2i - &.

Let u_Ipow return to the expression (15). We have demonstrated that the
terms of g_" which, in their denominator, could include the quantity v_ + v_'
raised to a power > 2i - h must necessarily be present in the expression i

, o:_,'o,/,1 [,/.%

In the monomials R of this function, given the form (12) of Section 5, we have.t

D - j" = el. In the denominator, the quantit_ v_ + v_ may enter raised to at
most a po,er of 2/ - 2, in accordance with theorem 1 on p.29.

v Finally, let us define an upper limit for the numbers T LI j'I + lJ"l =
= I_' - B'l + !_" - B"I in the function g(1) put into the _o_ of eq.(12) of
Section 5. We now state t_hatwe still have T < li + 2 and that, in the part

.. [gl,,], we even have T < 2i - 2.

• ' In fact, in view of theorem 3 on p.g(_,we will have the following expres-sion Ln the part (12) of the function

i

k--I

+ 2m + 2---v(m'+ n'+ m" + _")o=2i-__..

-,:,Thus, in the function g(1) thrown into the form (12) of Section 5, we still
have T < 2i * 2.

_•, To go further, we put the expression (12) in the following form:

i L f ' , f_l _r, r nl(_'.,p.) (,t'._',)"'(¢,_,F,')'_'(,p.,P',) ...
i _ rtl# , t_

(q"0't'.)_('/-_:"'%OP''':,'_',_'''_"_'
" I" ' "_ '_' °'_" "°_" (19[

'" ! _-%,,'+.'+m"+.")_(,.)
_' i --;---,--_;;;--v---:--,_.,V- ,----c-'_,_--_'--_;.'_.,•
, _ (_PodTo) (,l'od,Po) ('Pod,to)" (,_od_,o)--

i

"' For each of the functions _oq_, q_*k, *O_,,q_*k, placed into the form of

_',; _e_l_ _f oSet_aO_eS,oWe.always_V_,dtiS i_ j i+ tj''I_ 2k'iionoaCC°rdanCeowlth_h r p s a d n p 32 I a" o, n he fpnct n n the sec nd line
" bf eq.(19), we have S _ m as in the function G_'; , because of the second

i
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Condition (9). In view of this, we thus have the following expression in the
function (19), given the foz_ of eq.(12) of Section 5: i

, Zn
" ' I"" _2i -- <2i+I.

k-I E

In the part [g(:)] of the function g(') J' = J"• we have = even, so that S and T,
coincide and are divisible by &. Thus• we definitely have T % 21 - 2 in the

, [.(1)ifunction Ls J if i is odd.

The case _ which i is an even number remains to be investigated.

Let us first, generally, derive the parts (19) of the function g(1) in
Which we could have S _ 2i. Evidently, it is sufficient to consider the
parts (19) where m = I or m = O. If i > i which we assume here, it is suffi-
cien_ to consider the parts (19) where Z(m? + nt + m" + n") _ i. In addition•

(i)
in G it is sufficient to consider only the terms where S = 2, i.e., _he term_

2, i r,,,_,. U,,_,_,,.2_ ¢,...,)._. _ _,.o (_" 4- _'") + o.. l_' -,-

_, (see the Table on p.20). Thus, the ter_ of g(1) in which we could have S _ 2i

__are necessarily located in the part

.,,,_,o,/o_;)' /,O,l,O | ' o.,

:. ..,,0I_,° + ,/o,

_o._,o i/'_"o'!_o)('po__)("";'fil('r';'P'i))
-: ; _+b--i

_;..__.o l(_"o,/o)(,'"o,r,;,)(,p'°<) (,/.,"l,)) (20)
" .+a-_-, '/°'

,,,,o,.., -, ((q'_,r_)(,l'_,_i_) (,_'"'_¢,_",'"'_- C; _ rO r dl|"._,: +,.,o.,_ _....._,_,..... _ . ,_;,. ,"
c+d-s-i

_ _ Now, we make the statement that we have S / 2i in the function g(1)• , pro-
vided that the number i is even.

i In fact, we then have S / 2i in the first line of eq.(20) since J' + J" /
• 2i - 1 in the function *_p_ ' J", and since j + / + 2i + i .in the function

i, _'$_'(see theorem & on P.3&).

," i Let us then investigate the general term corresponding to the indices c, d i
c _n the third line of eq.(20). In order to have j' + J" = +2i, we must pre- /_

_erve, in $0_@, the terms where j + J = +2c and, in _o_4, the terms where J
,_ _" J = 2d. Similarly, to have there J J = -2i, it is necessary to retain,

_n @*', the terms where J' + J" = -2c mud, in _, the terms where J + J" =

_ _ -2d. Moreover, one of the numbers c, d is odd since their sum in odd (= i --_ i). Let k be the odd number hers. A_cording to theorem 2 (p.32), we have
+ W + _ ! ! ! + _! __' _' J / 2k in *o(pi and J J / -2/(in _. Thus, we have S / 2i in the
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t?.Irdllne of eq.(20).

It can be demonstrated in the same manner that S t 2i in the fourth line.

The second line in eq.(20) remains to be investigated. We state that _lso

there we have S t 2i, provided that i is even. In fact, we can argue on the •
function h(i) introduced oy eq.(17), as we had argued above on the function gti):.

th fol owin a tofItewilllbef°Undrthath''a_l)theterms of hti), where S = 2i, must be located in" gp : •

,if I, _ it u

-oo E, .... - -,a+b-i

Moreover, hCl ) is _ constant. Consequently, we have S f 2i in the expression
(21) and also in the second Line of eq.(20).

We _ow have demonstrated that S f 2i in eq.(20) and thus also in the func-
tion g(i , provided that i is even.

It follows from this that T 7 2i in the function [g(i)]. We have demon-
strated above that T _ 2i in this function. Therefore, we will still have T
_ 2i - 2 in the function [g(i)].

Let us now introduce, in the ._unctiong(i-I), the parameters P_ and O_ as
" well as the arguments w'and w", defined on p.20. Then, we can write the func-

ltiong(i-1) in the form
f\

-" g(i-- l) = ,_ (j(_i)
'-r,r_o_O"w'+j"w"), (22)j,,j,,

with the conditio_ j' _ J". According to what we demonstrated with respect /_5
to the function gtlY, it is ob%_iousthat G_.,2_.._ is rational and even, having _he

degree 2i with respect to eo, 0_, P_'. The denominator of G_]! is of the form
i f N • • t I! , " " ! N '

....(v_ + vI_. We have s > O, s _ 21 - _, if j - j = i, s< 2i - 6 if J - J #

/ 2. Finally,we still have lJ'l " )J"[ _ 2i and even lJ'l + [J"l < 2i - _ if

'._ After all this preparatory work, we can pass to th_ integration of eq.(ll)_

_et us denote the constant term of the second member by n. Since

W' _ tt _"t + 7', W_' = u v't + 7",

, _e will obtain, after integration,

_,, ,. t#,,,_,, f'w"), (23
,'r_ _,* = nt + ¢--_ j,-_r_ _rv,, sin (j'w' 4-

_'(: h",; _here c is an arbitrary constant. In t • sum E', all terms w_.ereJ' = J" = 0
_' _ust be excluded.

- "i
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It is now a question of expanding the.quantity (J'v' + j,%,,)-Iin order of I
magnitude of the irdividual terms. In eq.(8) of Section J._we ga,'ethe expan-
sions for v' and v"'. We know that i

'_ " O: i

t

and we also know that v. and v" are ra,_ionalin _, pcv2, p_'_of the degree 2s !

with respect to co, 0_, !P_'since the denominator is a power of v_ + _ whose

,, exponent is _ 2s - 6.

Let us now fix J' and j" by first assuming that j' / J". By - __angingthe _
:. 3eries in powers of _, we can then put

,(' _i' i',
, _ _,V_,_.,' = _ ,:p(2_)

2/>.Ii,I+IX,I • -- ] _ .,k_l/,l+l/,, I

_,yk)
1 _ The qum_tity J,I" is rational ,andhas the degree 2k with respect to eo,.,P_,0_
:') _ts denominator is a power of vI + _I'_ince the exponent is _ 2k - h if S -

:_ - j" = land_ 2k- 6if j' - j"f 1. /.';6
21

!_ Let us next assume that J' = j" = j. In this case, we have

2_
• t it

" (i',"+i",,")-'=.- +,, +', " " ).... it2 J S "_" _s --1,
_ " 7;' (1,,+ v,) _', + '/2 + ' -'--': +""'_ 1'_ -_- i'_

,_ tet us then put

_(' _ ' ' "" = "'_" (25
"_! i'lJl+ ')1('_' + _ ) k-lJl+!

r(_")
_ The quantity -j:l,0is rational and has the degree 2k with r_spect to e, 0o, pd,.

_ its denominator is a power of v[ + _I'whose exponent is _ 2k - 3.

:. _ Finally, let us introduce the quantities ¢', ¢" and 8 defined by eqs.(1)
_._. _nd (2). In addition, let us put

_(,_ I -" Pk l !'= "_',J""
I

'_ _hen, in view of eqs.(23), (2h), and (kS), the solution of the first equation iz

_ _he system (2) of Section 3 takes the form

i _ _(_' k)

,, _,* = _t + c + z_'-'i',_"sin (j'w'+ j"w"). (26

'-" _his is a formula analogous to the formulas (3). The coefficients C_$_,),are of
_he order of ma_itude of 2k; they are rational and homogeneous _ith 'respect to i

.v _he quantities , , ,", f,, and _. Only even powers.of._ are encountered. The

_'_,,_enomna_or Is _ power o oz 9 slnce _ne exponen_ s is _ 0 and

I

"19650"19998-045



<__2k-- s, it;/'--j" = o;

< 2k-- 4, ffj,-- j,, _ j;

<2k--o, i/j'-- j" > z.

The integers j' and j" are limited by the conditions /_7

J'-i" _o; j',= e_.;

0 < j' + _'"__.<2_"-- 2, i_j'-- j" -----O;

IJ'l + IJ"l<._k, iCj'-j"> o.

¢2k) " _ or mf J - j Is even andThe numerator of.C: ,,.conta.lnsth. fact ¢'lJ'l¢. ]_"l. , . .
the factor e'¢'IJq5e;,,JIJ..,i£ j" - J" is odd. The other factor of this numerator

• • f_ N_ !
is a polynomial homogeneous Ln ¢ , ¢ , e a, and _.

,,.,(_) (4) polynomials. The fractional: Obviously, tP.ecoefficients _j;j,.and Cp _,,are

. inequalities of the longitude are at least of the order of magnitude,of _.
The fractionalte)coefficients"of the order of magnitude of six are C_; , Clzrs,
and C_ . The first two coefficients originate in the f1_ction 9_2) [the part
_18) for i = 2S. The third coefficient has its origin in [g(S_S.

The quantity n is known as the mean absolute motion of the planet and can
=_ be expanded in the form of

n_n (°}+n (2)+n (4}+-..
N

_, in accordance with eq.(ll)_ we specifically have

d/,_,,o.o.o
' - n(O)_ ,._t*-_, /Z('j)_ _ _t o,0,0,0. , d_*

i The quantity n(ak) is of the order of magnitude 2k; it is rational _nd homo-
Cn_ ,a (._T,) ._ geneous with respect to ¢,a, , e , and _. The d._nominatoro£ n is a

Dower 6' where the exponent s satisfies the conditions 0 < s _ 2k - 8. Thus,
(_) (s) -- (air)

_,:-. _(4), n , n are polynomi_s. In addition, the n (k = i, 2, ... ®)

_ _bviously contain _ as the factor.
H! 1

i After having integrated eqs.(1) amd (2) of Section 3, we should briefly
_iscuss the system (3) of Section 2. This system yields the _eneral solution

[except for the auxiliary variable x_ which need not be known) by introdu.cing#
,, _n eqs.(1A) of Section 3, the expressions (26) and (3) of the variables Yl, _z,_

_ _, _, _. Thus, the unknowns xl, Yz -(nt _" c), _z, _Z, _a, _, are expanded /_8
,_ _ trigonometric series, arranged in multiples of the four arguments linear wit_
. _espect to time:

_" [ nt + _, t, u; .=ttv't + y, w" "."try"# + _".

_I _he coefficients of these trigonometric series are series of functions rational

",' _¢L ,homogeneous in ¢', ¢", _', and ¢_, arranged in order of magnitude of the

i h5

1965019998-046



terms. Here, only _¢en powers o£ /_ are encountered. The denominators o£ the
rat_cnal functions are powers o£ the quantity 6. However, it obviously is not
necessary to enter into more details o£ this solution ".hoseg_.eral nature is
sufficiently well known from the above discussion.

One o£ the essential points o£ the theory o£ o_inary minor planets is the
appearance o£ the quantity 5 in the denomJamtors. This quan._"ty will always

i have at least an orler o£ magnitude of two. In reality, the series Kivem in
Sections & and 5 are expanded in powers o£ quantities compa__ble to _5 -a .

Th_athe discussed integration method basically assumes that 6 xs not comparable
to _ or still smaller. In Part II o£ this research, we will investigate the
exceptional -'asesin which 6 becomes too small, so that the tenm_ o£ the series
used do not converge sufficiently rapidly.

,,)

&6
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FESEAECH ON THE MOTION OF M_NO£ PLANETS m_-/l

PART I7

H.v.Zeipel*

In th_s Part II of the research on the motion of minor planets, we will
discuss the theory of crdinary planets in a general marinerwhich is applicable
not only to the case of regular planets treated in Part I of this report but

also to the case of planets which we there called "singular". To accurately
define the difference between regular planets and singular planets, we will give

in this Introduction some information of a gec;metricnature. These new concepts
will make it possible to discuss here, in rela-.ivelyfew words, the main resultc
obtained ir this second part of the research.

By eliminating, from the theory of ordinary planets, th_• moduli of eccen-
tricity and inclination, we will obtain a particvlar solution containing only
two arbitrary constants. The canonical elements in this solution are periodic
_ctions of two arguments linear with respect to time and r_ving the mean abso-
lute motion of the two planets as velocities. The two arguments of slow motion
_ve vanished together with the moduli. In this particular solution, the in-

c/ination is zero; the perihelion execut_ small ozcillations about the peri- /2
helion of the orbit of Jupiter; the eccentricity is small and nearly constant.

£

#

Let us designate by "norm_l eccentricity',the mean value of the eccentricity in
this particular solution. The normal eccentricity, which we denote here by _,
depends only on the mean absolute motion of the minor planet. The ratio of _
to the eccentricity e' of the orbit of Jupiter can be expande4 in powers of e'_"

@nd of _ (mass of Jupiter).

After this, we will consider the orbit of an arbitrary ordinary minor

* Received 12 January 1916.

_ _* Vol.ll, No.7.

&?
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p_lanet. To represent the motion of its perihelion, we will define three vectors
OE, 0E, and EE in any fixed plane. The vector OE is fixed and its magnitude is
equal to _. The vector OE is variable and, for magnitude, has the o_cula_ory
eccentricity of the investigated general orbit. In addition, the angle XOE is
to represent the longiL_de of the perihelion_of this orbit, cou_ted from the
perihelion of Jupiter. Fin_ally,the vector EE will be the geometric difference
of the two vectors OE and OE.

The vector EE will be designated as the "eccentric vector", while the
angle XEE will be called the ',longitudeof the eccentric vector".

Because of the perturbations of Jupiter, the point E describes a certain

curve _in the plane under consideration. This curve is almost a circle about the
point E as center. The nonperiodic component of the longitude of the eccentric
vector defines a linear argument with respect to time, which we have denoted by

-- w'= - O'v't + t)-

The velocity -_' always is a positive constant of the order of _. /3

We will also consider the longitude of the node of the general orbit _n

question, with tI._slongitude being counted in the plane of the orbit of Jupiter
starting from its perihelion. The nonperiodic portion of the longitude of the
node defines a second argument, linear with respect to time. We have d_r.oted

- thisby

-- ,o" =. -- O',,"t + "/').

The velocity -_v" always is a negative quantity of the order of _.{

-- In the t!.eoryof ordinar_ minor planets, the velocity
)

-- ,. (v' + _)

" is always very s_l_l, at least of the order of _. if the velocity actually is
of the order of _, we have to do with a iegular planet. If, conversely, the
_eloclty _(v' is of the order of _w_-or even sma31er, the planet will be

singular. Singular planets exist for which the velocity _(v' + v") is as small
as desired. There are other planets, completely of the general type, for which
the quantity _' + v" is identically zero. In this latter case, a libration be-
tween the longitude of the eccentric vector and the longitude of the node exists.
In the case of 3ibration, the t_ arguments w' and w" are no longer independent;

< _.. _heir sum is a multiple of n . To compensate, a new linear argument w is in-
2

,_. _roduced whichcan be called the argument of libration. The velocity of this
_rgument w is at least of the order of _s but can also be infinitely small.

,, i il.etus now define the analytical form of the canonical elements in the

_' _ theory of ordinary planets. Let t be the mean anomaly of Jupiter (whose motion
, _ype with the eccentricity e ). Let, in ad-.• Ss supposed to be of the Kep!erian + " '

&ition, n be the mean absolute motion of the minor planet. The canonical ele- ',

_._ .................... -T. _
\

i
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ments are trigonometric series of the two arguments

and n|+c.

The coefficients of these seri__ are slowly variable and can be expanded iv /&
powers of certain quantities, comparable in magnitude to the eccentricities, the
inclination, and the square root of the nmss _ of Jupiter. We express this by

stating that the coefficients in question can be expanded in powers of j_. What
remains to be defined is the nature of the slowly variable coefficients C which,
in these expansions, multiply the various powers of/_.

In the case of regular planets and for certain types of singular planet,s,
the coefficients C are polynomials in cosine and sine of the two arguments w
and w".

For other types of singular planets, specifically in the case of libration
which we m_itioned above, it is convenient to introduce elliptical f;Auctions
snv, cnv, dnv and their integrals, in which case the argument v of these func-
tions will be

j
provided that no libration is present, and

2E
--W
,'T

in the case of libration (K is the real half-period of the elliptical functions).

Then, the coefficie_t_ C are polynomials with respect to these elliptical func-

tions and their integrals, as well as with respect to the cosine and sine of the
principal portion of the longitude of the node . The expansions of the coeffi-
cients C, placed in this form, never fail. In some cases, they are preferable
over the corresponding two-argumen_ rigonometric series. In fact, the te_q
of these latter series converge too slowly when the velocity of the argument
t

w + w" resp. w becomes too low, which happens whenever the modulus of the

elliptical functions approaches unity.

In conformity with the program of our research, which has the specific /5
purpose of a qualitative investigation of the motion, we will not give all de-
tails of such expansions. We rather limit the discussion here to indicating the
form of the series and the order of magnitude of their principal terms. In ad-
dition, we will show how these series depend on arbitrary parameters. This more
or less constitutes the basic contents of the various Sections of this Part II

of our report.

= First, in Section 7 we will demonstrate the possibility of the existence

_*This principal portion includes first the term -w" which is linear with re-
_ spect to time and then a certain periodic term with the period 2- with respect

to the argument w' + w" resp. w. This periodic term is comparable, in magni-
tude, to .mity.

&9
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_f singular planets by showing that the divisor 6 (see Part I, p.36) may vanish
for the eigenvalues of the arbitrary parameters.

In Section 8, the general method of Section i will yield the means for re-

ducing the equations of secular variations to one degree of freedom.

Next, in Section 9 we will investigate, by geometric means, the nature of
the general solution of this simple canonical system, Occasionally, the con-
tours defined by the first integral of the investigated canonical system contain
a double-point curve. This curve constitutes the limits of the libration do-
mains mer.tionedabove.

In Sections iO - 12, we will demonstrate that it is still possible to form
the solution of the investigated canonical system by means of series whose first
terms converge quite rapidly. In the vicinity of the double-point contour
curve, which forms t'.elimit of the libration case, the use of elliptical func-
tion.Jbecomes indispensable.

t_timate!y, in Sections 13 - 15, we will continue the integrations to

finally obtain general series giving the canonical elements of ordinary minor
planets as functions of time and of six arbitrary parameters.

!"

If the values of the arbitrary constants were randomly distributed, singu-
lar planets would occur rather rarely. In that case, their number would be only
a few percent of the total number of asteroids. Planets characterized by libra--
tion between the longitude of the eccentric vector and the longitude of the node
would be even less likely to occur. Neverthelessj it is well possible, because

Of the resistance of space, which probably has been much greater in the past, /6
that the values of she arbitrary constants have undergone changes and that they

" thus had tended f_ally to satisfy the conditions of singular planets. In fact,
: the libration centers correspond exactly to the minimum values of the total

energy (denoted by -F) if we vary the value of the parameters which we denoted
by h. It is well .rnssiblethat a study of the distribution of the values of

the arbitrary constants _c the theory of motion of minor planets may lead toward
the discovery of this mysterious resistance. However, before approaching this
question it is necessary to investigate the various types of motion and to check
how the solute_ondepends on the arbitrary parameters.

' Section 7-

To demonstrate that the minor planets, designated as "singular" planet_,
_i.ght actually exist, we will show that the quantity 6, or else the quantity

- _ + v_, may cancel out. For abbreviation, we will put

N' ],4,0 HI.2,2,=--(2Ho, o + _o ;,

_" ! _V"-- ,..,o_ _,._,, (i_

5G

I
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: Then, the quantity v_+ _, introduced in Section &, can be written in the form
of

,",+ ,'7= 2(_"Q.+ lv"_?-iv). (2)

First, we will give the expressions of the coefficients 'i_ 'e in accor_c,J

_ with eq.(29) of Section 3:

H,.,.0F,.0.4.,H"_"=_,.o._,H,,o,_F,.O.0.40,0 _ 0,0,0,0, . *'0,0,0,0_ 0,0 = 0,0.0.0,

_1.2,_ F_nO.2,o , _,,_1.2.2.o . ,_i.l.&O qt , ].o.4.o0,0 _ 0.0.0.0Te._0,O.0.o-'-'*"0.°.l.0_'_"-.-'tF0.0,0.0p_."), _3)

HI.o.2 F_e.o.2 F l._o.;: o,o = o.%o,_+e_ o,_o.o.

In view of eq.(26) of Section 3 and the first te_,, tn the e.,q_ansior, _"or the /7
root of eq.(16) of Section 3, we also have

F,.,.,.0. _,,0,"_0 = (p_)),.

nF_2p =a.o.o,z ,0,4., =xp,:a_ ,o,o/:
It is easy to express the coefficients op_o, _o;_op,_op_o, :oAop, _ao_ by

: means of Laplace functions. To this end, we will retain, in the ,zcpansionof

the _erturbation fur_-tion[eq.(5) of Section 2] the terms which are independent
of e and of the fo_.'-arguments yx, ya, uh, ma. Below, we give these terms up

- to the fourth degree inclusive (excluding the constant term):

• ! ,/,I,0,2,0^, __ 1L:,l,O,O,2_t __ A_"_I,O,4,O_4 _ 1_,!,0,:1,2 $ , --A_I,O,O,4__,
._0.0.0,0_% "r _"0.0,0,0_, "r 0.0.0,0_'_ -r _ O.O.O.O_s _, "1" 0,0,0,0_', + "" -.

Moreover, in the Leverrier theory, the following expansion is o':tainedfor this

._ part of the perturbation function

J ++ "• _21

{ where the coefficients depend on _h._ major semiaxes a and a' . i:orcomparin_ the'I
. two series, it _s necessary to put, in the latter,

"_ ' a=-z', g'=l,

(;)'-,: I'._; - _,,

• __. _ e: e:
' .- _'--4z.--2_: 4,z.

i!
{see the equations in Section 2). In this manner, a comparison o2 the two

,_ _eries will yield the following formulas

, _,o,_,o (0).... 4_, F_,o,o.o=- (2) ,

,,to.o,2 (! 1)(o),_Z, _0 -_



16z' .,,o, (.o-"o,_,o,o= -- (2)(o)+ (4)(°),

1Ox' F ''°'_'lo,o.o,offi=2(! 1)(°)4- (12)(°>,

16z_ _1,o,o,4 (17)(e)l' 9,0,0,0 _

The Leverrier coefficients depend on the LapXace functions, over the in-
termediary of the formulas

(2)_o----b,O_+ ! btO)_ ! acre'* 2 ) 2 '

(4}(°)-- 2!b(O),+ 8 b(,O),1

'., ] !
:,, (111 (°) _ -- _a_ ),

1

-, (12)t°'_--a (cm+ 2c_' + _e)),

_' (171(°)_. 3at 12do) + t(_.

:_ In these expressions, Leverrier makes use of the notations

.... (o .d_b(° _.) a"d'd° e_) ,,d"do-, o,.=a _, _ ffi "d'-_-' =" -_-_'

-> where b111 c(t) e(1)
! , , are Laplace functions.

• We will make use of the well-known expansions of these functions. Settingj
. " for the time being, i

:.(

•-- these expansions can be wr_tte_ ".a._follows:

Ib:O,=l+
z. !- t

'2"'__ e(°1=. § [2n (2n + 1)]' k,,a2-.

',9

: _._ In view of this, it is easy,to derive the formulas

b,.

52 ....

i,
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/91N' = _2n(2n+ 1)(2n_+5_+3)kna2,, -',i

_"_ 2n(2n+ 1) (2gt-] - tt-t- 3)kna 2n-!

or else, in accordance with the expansion for c(x)

This makes it obvious that the coefficients of OA2 and 0_2 in the expres-

sion (2) for v_ + v_ are positive.
• J

Next, to demonstrate that the quantity (2) may vanish in the domain

O<a<1,

it is sufficient to prove that the quantity N may become positive within this
domain. According to eqs.(1) and (3), this quantity N is linear with respect

/ to _. The coefficim,t of _ is rational with respect to certain coefficients
_,_oof the expansion of the perturbation function and remains finite since _v,_

•which enters the denomdnator does not vanish. The independent part of ¢g in the
function N is

F%o,_.o F_.o,o,_-_r = ,o,o,o+ o,o,o,o. (t_i

Thus, to demonstrate that the quantity N can become positive, it is sufficient

to prove that the quantity No can become positive and is very large.

" • FoEthls purpose, let us define the values of a or, rather, the values of
' nx = a-_(nx > i) for which the function _ becomes infinite.

_o,_
_"_ The quantities coCo,c, and _ are the coefficients of p_ and of p_ in the

_xpansion of the function F_, defined by eq.(6) in Section 3. Obviously, we /I0

_an put e' = O. Then, in the ak_ansion Of the function Sx given by eq.(5) of
Sec_lon "3, we wiIJ have

,_ i ,., +,._-li, + i,I + 2_ k>__o.
, i

i_ _hus, it is obvious that the wanted poxes of the function No, considered as a
_unction of nl, will be

'". .,-¢+' (5)
_, --_ _--1,2,3...ao
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i

and

n, q+2
- q 3.5...®.

In addition, the poles (5) obviously are double whereas the poles (6) are
:. single.

It is easy to see that i

_' N, o--4, z,l,o,I,o ., 1

,, _ "_,"t_"-q,,+l,,,o;( q+l_,+_ --- !
I, I

i_ is valid in the vicinity of the pole (5) and that

8 _1_-,1,o,_,0 _ IF1"°'°'_-g,_+_o,2j_"_jI" =- ,;' +, q+2+'" '
,'_ II$I.----
,,, q i

,, :Lppliesin the vicinity of the pole (6). i

_ _! Thus, the quantity No is positive and very large when nx is close to q + ]j
,, + q
- " _ q 2 l

,_ and also when nl is slightly smaller than --. From this, it can be con- I
q !

i: _

, cluded that the quantity N is positive in the vicinity of the pole (5) up to a '-
-.. Certain finite distance from this pole and that this quantity is also positiveI

:'.'i q+2
-,,_When nl is < up to a certain finite distance from this pole.
41 _i q

Let us put, in particular, q = 1. It is well known that the majority of

_ the minor planets is located within the domain

_ _h_ted by the two first poles (5) and (6). In certain parts of this domain, i

-,-._he _lu_ntityN is certainly positive; in these parts, we can select the values _

"..'_f 00 " and P_ such that the quantity _ + v_ is canceled. From this, we can
,_ conclude that the existence of singular orbits is well possible.

,: _ection 8.

,._ Let us now return to the c_ _! system of the secular inequalities,

_, _laced in the form of eq.(18) ;ion 3, i.e., to the equations

':' _., =Nr' dt, ----_, ° (l:
<_0_.

_ dP' dH d_" dH

5_. ' Ii
'l I
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For H, we have the expansion

H = Be0)-,-!,Hm + I,,H_2_+ .-. (2)

and, for _ m) , the exoression

Q",-' co_O,d + f,a,,,)- "., Os
where

_' = ( cosa/, 1,,'= ( sina/, (h)
_" = (' cos d', _" _ (' sin :g'.

The integers m' , m", j', j" take only the values that satisfy the conditions

mr + re't>2, m" = eve_,

,,,'=1/'1+ 2k', ra"= I/"1+ 2k",
2,,_+ 2= If +fl + _' + ,n"+ 2k (5

=If +fl + Ill + Ill + 2_',1

where k', k", k, and _ are any nonnegative"integers.

-', The system is of the type considered in Section 1. There are no variables
'" Corresponding to xt, Yl ; the variables _, I_ are denoted here by {': ._'., _",
_' _". Finally, the quantities x_ and _ in the expression ....

r if:

i

" correspond to the quantities vk in Section lo i

Z

We here have the identical relation

."o. (7)v'. + ,.=

: It is possible to apply the reduction method given in Section I. For this

'" purpose, we start from the equation

' _d.,",/, _, ,/')- H., ,¢, _,,, 'T¢, • (8:

,, The unknown functipns H. and S are expanded in the form

U

. H, _ H_°)+ phi) + ,u'H_) + ...,

_s _ _ 8(o)+ #8(I)+ /d_(2)+ ....

_ We first have
I

,7t i H_ _- H(o)-- 0%

-7 ,-, ,,' _.... ,,' .y_?:;':,£_.)1:7=.......7,7_ , .... ,
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By equating the coefficients of )_in the e_ansion of the two m_mbers of
eq.(8), we will find the equation

'"°-_-0'- + ° d(o" = --H_).

: We then must ,,)elect,for H? ), the part of the function H(z) that depends on _'I

and w" only in the combination w' + w". Given the conditions (5), it will be
found that _2) thus becomes independent of _' and w". We then find

'r' g_--___1'('O_'_ HI"_'2--''--"° HJ,0._J,_ HI 2.0 'S" _I,0,__,,,,uo,o _, + o,o _' t''+ o,o t' q o_u(' "P,_,_o,o¢ ,

S0) _ _') **i',J" .. /;I.'. _ j,,,, +_ '.

i _here, in _ , the ters_swith J' = j" must be excluaed.

21 i .By equating the coer'ficientsof _s in the expansion of the two members of
,_ _!eq.(8), we find

! - _i ')'°_(_' " d(_"= "

i _ _y putting, for abbreviation,

dl]O)d,S(_) ld,S_._, [dS(')_'
; -'> H(=)_ H(_)+ d_' d)_' 2,_ .., ,¢ )'i

" . dH_)d8o) aH(_.)a_.) .' [d,_(,)_._: laS(_)_.

'_ ,, For _s), we ,musts_ect the part or"_a} that depends on =' and =" only i_ the
! _<, combination _ + _". Now, in fo_in_ this part, it will be found that _is
_' _,- _ndependent of _' and _" and tha:;I_ s) is Just simply a polynomial of the third

,-_ _egree in O's and P"_. We _ not write down its expression and also not thei :,'_ expression of the function S_' _ w_.ichis a polynomial of the sixth de_ree in _'
_, _', _", _" with certain syw_etry properties. _ i

_.'. It is necessary to investigats also the function H(,s) , By equating the co_
_'. sfficients of I_a in the two members of eq,(8), we find I

,<-, , _) ,,&S_) R(')--//_) (9i.). _.dm---T+ _',

_o _Ith the notation t

_,_ • _.
, _ i-l_)-- H(_)+ dH(')dS(') dH_)d8(') 4Ho.)dS(,) dtt_ d,S(,)

+
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1dJH( t_/dSCZht d_It (x)d3¢"d8 (1_ I dSH(i) [d_a)l,

_dSt"dS(_) dSO)dS(_) dStnldS( _ dSO)dS(2)[

:_ _) = Q(¢',¢")+ _(d', ¢")¢"d'co_(_,o'+ _"). (lO!

!Wewill not give the expression of the polynomial Q which is of the fourth de- !
:greein 0'2 and 0"s. However, it is necessary for what follows to make a more
detailed investigation of the polynomial R. In rather extensive (buc well

_: !checked)calculations we founa the following expression:

\

-, ,, Rce' d')=A + Bled' + _ e'--_} (]_1_

The constants N , N , N, A, and B are expressed by means of _he coefficients
_ _' " " " 0 _" )H_'5,,_ which appear in the axpresslons (3) of ,.hefuncti ns H • The three

::. if_rstof these constants are given by _q.(1) of Section 7. Below, we give the
Tormulas for A and B:

@ 1,--2 "Jr ,_12,0 _0,2 _ 0,2 2,0 ]

¢r]l $,0_l,l,2r]l,O,Z , ct..r.t.l,:,2_,e r]l,O,2 _ rj|,l,2r_l,i,21rJrl,2.0'" "1" Z[nl, O 1"a20,2 _ -'al,O -(._1,--2_,0
Jr" $_1./Zl:O'"l,O HO,' L _.,(,

, _jl, 2, 2 t rj'l. 2, Ot | lEjr1, 2, 2 ]rjI, _, 0 ]r.jrl, O,2 ]ryl, 2,2 / LfI,O,2_|/
,, "t" -o_--2b_2,0 i _z_O,O z"_O .-'JO,2 -_ .:._2,--_x._0,2 I /,

,,[

After thus hang determined the function H!__) , we can :Integrateeq.(9) I
which will yield S_° . This function will be a polynomlal o2 the eighth degreel
in _', _', g', _" with certain symmetry Iproper_ies. For our purpose, it is not

_ necessary to give its expression here.
l

_ Evidently, we can continue in this '._annerand successively define the

_, ivariousfunctions I_ t) and S(_) •

'"" ] In view of this and in accordance With the ru__s giver,in Section I, we

_.: lwlllintroduce the new varia_.ss g_, _, _, _ by ,._eansof the canonical

, , _ , r'/ !'_%,'U.
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-- ---_ _ . . . .,

---- • - " = _ " 3_.__ "'

=:- --. . ).... :.: '• _ ........ • "_,j'e zeus ..... • -, .

__= .; -.-- _ :- _ !

t " ._y so3vlng for_ , t! ) _ ) , , we will £ind ,.ha,.the di_.erences _ - _,

. " -_-": 'The ccd£fi'cLer_s of-_ in 1_hese series, are polynomials of the. degree 2i__ +- _ in _-

• ; _ _: :- T,ae :ne__"_riable_-: sg_isf_ _ti " _- "-" " ,--: the ons • _ "
" " " " ,? "=t " -

:>6-,; . : - - d _' d_ " - av: - a_- = _

_o_.:_. - ..:...>-- _ - . -:- a-_.='D--2_,_-._-/-_D-DT._:
i

._,s__.'T.henew character_s_ze :P_ac_ion "'e-g_,_, g_, ._, zs obta/med by mer_ w_itin_
:-_.-:.____,._';g:, _=_nStead-'_Of _' , 11'-,_", _"-in/_he _q_ression-o£ +-he function /]-6

_._ - _ I)__ t_ • _ • * _ - . - "

-J- .,___(_-, I] , _n, _,n)_defJ_led above. , :,, . -: :

_" _"_7_J _ Itis easy to_-reduce the z_anonical =s_stem (3-3) to. one degree of freedom. _ ..
_s __F_r :this pur_ose_ let u_ pug- " : " :-- = i

v, : " _ -- f_ cos m=, .... sio " '

" _- ::: The characteristic function K_ 0£ the s_tem (13) depemds on d. and _g ord.y in i
i - _---_the combination d. + =g. Consequently, _ins_ead of-the" variables -

b %6 :

s Is

" ,,., ._e car. introduce first - "- I -'
q; . ,

, --,- - _ 1 -_ I ,_
' "

I

':' -< )_x_d then " . ', . ]

-- =.i ,_ I. ] _ I ,,z )I

'i(: - - _l' .

(@o *

].. -__,-litis well known th,._these two __rmn.sformations regain t,he canorlcslform. i

1 I _ _ !

t

• -;'.. -" - c--, ".-': {,:"' /._ - " -° ''= 7"" ;" _'_,_
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?

-'__ The function-H.,- _xpressed as a function of the new variables _(16) does
__-not depemd on the second of the angulaa variables. Consequently, we will have -'
_-<."..-thefirst -ir,tegral _'

._-== l_l_t.

In-addition, _e will have the canonical syste_ with:one degree of freedon

.:, _ d_. dH. d,o dU. (171

- After integvation;ae finally obtain,the Variable _" oy means of the equation /17
_ -t-

2-..'_Werecall that H*:is given by _he e_ansion: _ D

•:_ - = H. = H.m + FH_.)+ p'H_,+ ---. _:

_-% We obviously have here '

i

2"_ ; "

.... __( AW..-,_)¢ x,,,-,_ ui.@.,_, zrl.O.' ,-." _ -H_)=--- _-+ +(N �Œ�Ð�h�_!_----o,0_T_.o,o x,

H _._ a polyng_lal of the third degree ix,_ ._nd_ :

::- _. H_._ Q(e',d--z;+ R(@',e,--z)e,((--z)e,o_9-_,,
-_- . . . . . . • .-. • . • • . . . _ . . •

-., The polynomials Q and R are the same as thoce that.enter eq.(I0). The function
_- _ ) is a polyn_dal in pa and ._of the degree i +"I, whose coefficients depemd

:.--on _'. We can also state t.hatH__} is a polynomial in p_ and _(o _ - _) cos 2_ i
-.,:with constant cOefficieu_s that depend on _.

." _ection o

In a geometric manner, _e-wlll now investigate the nature of the solutions
of the canonical system (17) in Section 8. ,.

To this end, we put

•,_ _ -- e cos o_, _-- ¢ sin o,,

:" _-(H.-- 6',1 (i
. •--_,(_y,+ N")'
"2 i
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T

. _ . :. ?

., --" t,= t' (N'+ N")tz---_a(N'+ N")t,
L : - :"

i-._hereC is the value of the functionH, for 0 = O. The new variablesg &nd _ _
- 'satisfy the equations i

.._. This system has the integral

• 2

_; where h is an arbitrary_constant.

<_ . Let us considerg and _ as rectangularcoordinatesof one point of the ,
• ste_ (2), the point _, :I]describesa cer_ n

: "-'-plane, in a given,solutionof the sy
:_ ,curve.-in:thefamilyof contourline_ definedby eQ,(3)on varying there the - i

_ .:_ parameterh. These contoursare_losed, cover the entire_plane,and generally _ :"
-"" _o not intersect. In addition, they are symmetric with respect to the axes. --;-

-'! _or:each value of h, corresponding to a maximum or minimum value cf the func-

-_- %ion _, the contour"reducesto k pgint. Thase _tationary_oints, as well as ali

-'-__.2theot_r s_.ngular po_nt__ (double, poihts, etc. ) are obta_,ed-by solving the _.

....;equations _ _-

_, c_ _First, we have the following solution:

•_ : -_ _=_,=*0.
__ '_ _ --

_ __- The other singular points correspond to the tacnodes of the two curves

o

:" _.and

': ' &_ i_ -o. (5

.: iThecurve (&), which is single and closed,reduces,at _ = O, to the circle

• d_.) :
,,, (6}

,_ iThe curve (5) is resolvedinto four differentcurves:

-,: the axis of _ where sin 2_0= O, cos 2_o= +!; (7)

_c

I
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D

the axis of _ wher_ sin 2m = 0, cos 2m = -I; (S)

the circle 02 - _ = 0 (9)
i '

and, fin_11y, a single and closed cu_-e which, at _ = 0, is reduced to the

circle

R(e',_'-_) -=._ + B {(N'+ _,")e,--_v"_.--N)= o.
(io)

The concentric circles (6)and (!0) do not coincide. Thus, outside of the
o_igh_, the orZLyother singular points ere the _acnodes of the curve (&) with
the axis of _, with the axis of _, ariawith the circle P_ : x.

: Let us first study the sin&nzlarpoints on the _ axis° To obtain these

; points, it is sufficient to solve the equation

- ;dr_,1 =

which yields the distance of the singular points from :the origin. This equa-
-, 2 A) . .,.

tion has only one root Pe.,since _. Is of _he second degree in p_. Thus, we

either will have two sin_lar2s_etric po_ts on the __axis or else no Such

point, depending on whether O_ > 0 or o_ < 0.

= " Let us now define the singular points on the _ axis. To find these points,

u -it is sufficient to solve the equation

= [_]_2m--1---- O,
J

• . _ • • • •

whzch has a slngle root 03. This will yzeld two szng_ar points on the _ axis

or else no such poznt,depending on whether P_ - 0 or p_ < 0.

The roots P_ and p_ can be expanded in powers of _ since the coefficients .:
are polynomials Ln x. For _ : O, we have

N"x + N

Thus, the equation P_ = 0 has a single root . = -_ while the equation P_ : 0 /20

has a single root K & _. The quantities _ and _ can be expanded in powers
Of _. For P = 0, we have

Nr

., _n view of the fact that N' and N" are positive, it is obvious that P_ has the

as - hasthe as -%.
Pinally, let us investigate the singular points on the circle 0_ "=_. To
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obtain these points, it is sufficient to deten-ine the values of w which satisfy

the equation i

[_L. ":'c. (n)

In view of the _ature of the ftmction H., discussed at the end of Section 8,

this equation will have the form

Io('-.,.)+ l,'1_(*, I,)co,_,_=o, (11)

where fo and fa are certaih power series in _. and _. Obviously, we have

J D

, I.(_.o)= Lde'--Je-,=-_"_ + _''

' /..1.,o)-=..e (., o)=-_.{A +B(_'.--_)).

Equation (Ii) is satisfied by four real values of w between zero and 2-, pro-

-=, _-ide_t.hatthe value of _ is located between two values _ axld_ which are the
... unique roots, namely, .'_ef the equation

z

,=0
-" COS2m_ �.,'-.. and _ of the equation

: r,,] =o" : :

r

.Thequantities -" and _ can be expanded in powers of p,. Neglecting _, we L__
obtain "

#e ..

:'_ A comparison of the equations that define x_ and _ with those that yield
.. p_ and p-_WI.LIshow _hat

wf

' e!= *._ fo;: x= x_,
" - J_r X _ "e_= % %.

' Thus, for H = _respo x = ,_, the singular points on the circle 0a = x coin-
.. icldewith the singular points on the g axis resp. on the _ axis. i

"" i Let us mention, in passing, that the differences _' _ x_ _ I
Df the order of _s. _ - and - . are

_" In speaking of the sin_lar points of eqs.(2), attention should be drawn i
_ Zo the particular solution P = _ which corresponds to the two-dim_sional too- i
" ,_ion. The corresponding contour curve is a circle about the origin as center. I
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Considerable analogy exists between this solution and the other p&rticular

solution ps = O. The investigated circle, in general, is an ordinary contour
which does not osculate any of the other contour curves. This curve representsI

four double points only for the values of x between _ and x_, whose arguments w
are determined by eq.(ll). Let us also note tb_t it Is sufflci_t to investi-
gate the contours located outside of the circle 02 = _.. For the other c1_rves,

we would actually have P._ < O, which is impossible for the problem in question
here.

Next, we w/ll inves_iga_e the variation in the family of cur'es (3) with
the values of the parameter _.

Let us first note that the qu_itities N' and N" are always pbsitive and
that N may he either positive or negative depending on the value of the semi-

major axis of the minor planet (see Section 7). In the following discussion,
two cases will be differentiated, characterized by the sigh of the quantity N.

Let us first assume that /22

N<O,

, t

....such that a_ and _ are > O while x" and _" are < O. Let us vary _, starting
from very h_gh negative values and _roceed_ng toward very high positive values.

J

V !

If _ < 0 and, afortiori, x < x_ andS, no other singular points than the
origin exist (_ = _ = 0). Here, _he :fm_c_lon _ has an absolute maximum. (At
infinite, { is always negative and ve1_ high. ) The contour curves are arra_uged

about the origin, one outside the other.

As soon as the parameter _ exceeds the value a = O, the contour circle

p2 = x will appear; for positive values of x, it is sufficient to consider only '"
the contour curves outside this circle. These exterior contour curves remain

ordinary (i.e., without double points) for all positive values of _. In fact,

the sih_lar points on the _ ax_ and on the _ axis separate from the origin
i , _ . .

at _ = x_ ar_ at a = _, remaxnlng always at the interior of the circle p--= x.
If this were not the c_se, the circle 0* = x would stop being an ordinary con-

tour curve for cert_ia positive values of _, which is impossible _ince _ and

are negative in the case considered here. Thus, in the case in which'N < O,
t_e contour curves that refer to our problem are arranged about the origin if
< 0 and about the circle Os = _ if _ > 0. On a31 these curves, there is no

double point.

Let us then assume that-

N>6, "

isuchthat _ and _ are < O, while _ and _ are > O.

, To fix the concept, let us suppose that _ < _. If the opposite were
,; itrueit would be sufficient to permute the _ a_d _ _xes in the discussion given

below.
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if a < _, there will be no other singular points than

• _ _ •
ss_.ceP_ and P_ are negatlv_. In tb_s case, the function _ has an absolute ___
maximum_in (Po). The contour curves are arranged about this point w_thout
osculating.

If x_ < _ < _, we will have P_ > 0 and P_ < O. Then, the singular points
win beC o)and

(p_) _ _ + e_, - _ _, O.

Thus, _ has a m_-max in (Po) and an absolute maximum in (P_). There also is ai
Contour curve with a crunode at the or'ig'_o This curve has the form

,2

Fig.i

'_ .Here, we have a series of contour curves about each of the points (P_) and,
:' farther down, a series of curves surrounding the origin and the double-point
....contour curve. For the investigated values of _, the special planetary orbit

-1 which is approximately circular and correspondc to the point g = I]= 0 obviously
: is unstable.

Next, if x_ < _ < O, we have P_ > 0 and p_ > O. Then, the singular points I
are (Po), (Pg),_s_nd

The function _ has a re!:,tiveminimum in (Po), an absolute maximum in (P_) and

a l_n-_ in (P_)i There also exists a Contour curve with a crunode in the

j ,

Fig.2

i

g
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points (P_). This cui-_ehas the form shown in Fig.2. The other contour curves
are ordinary. We have a series of curves abou_ _ach of the points (P_) and,
farther down, a series of curves about the point (Po) as w_ll as a series of
curves surrounding the double-point contour curve.

As soon as the parameter _ exceeds the value ,t= O, the cortour circle

p2 = _ will aopear. This is an ordinary contour curve as long as 0 < _ < _.
For these values of _, the general aspect of the contour curves still Js tha_

shown in Fig.2. However, only the contour curves outside of the circle z_ =
correspond to real orbits.

• 2 • •

For H = _, the contour clrcle p = _ passez through the slngnlar oolut

(P_) mud coincides with the in_erior part of the double-point contour curve.

If _ < _ < _, the double-point contour curve _ll h_%vethe form shown

Fig.3

in Fig.3. One of its branches is the circle 0_ = _. The function _ has maxima

in (PE) and in (P_), a relative minimum in (Po), and min-max in the four double
points located on'the circle p2 - _. It is suffic_ant to consider only the
contour curves surrounding each of _he two polnts _P.-)as well as the curves
farther toward the bottom which surround the entile _ouble-point coltour curve.

For the invest5r ttd values of _, the plane planetary orbit, corresponding to

the circle 0s = _, obviously is unstabl;.

For _ = _, the contou_ circle 0_ = x_ passes through the singular point

I(P_)and immediately thereafter separates 9rom the exterior part of the double-
polnt contour curve.

Finally, if x > _, the double-point contour will have the form of the _
broken curves shown in Fig.&. The circle #_ = _ envelops this curve completely;
butside of this circle, the contours (the only ones to be considered) are ordi-

nary and concentric.

On all of the ordinary contour curves, _ and _Iare periodic functions of ts.
The period relative to t has at least the order of _-'_,i.e., is very large.

As soon as an ordinary contour curve more and more approaches a double-point i
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contour curve, the period will tend toward infinite. On the double-point con-
tour curves, the point E, _ indefinitely approaches one of the crunodes when t
iiocreases or dec':easestoward infinite.

m

/_ / -%
#

i / \\-I

";" \% /I

\,._ i- /

Fig,_

On the erdinary contours, 3ocated higher than the rain-maxof _ [i.e., or

- the curves surrounding the absolute nmximum of the functior _ in (PE)], _he
_ argument w varies between two limits. For these solutions, it thus has a sort

,, _ of librat±on. On the contours, located lower than the min-max of the function
_, the arom_ment• has a mean motion.

" For the existence of libration, it is necessary _d sufficient at first
ithatthe double-point contour curve exist _ w.hichis expressed by the con@i-}

I ,tions
, i

ii

, N>O, z_<x<x I,

and then, that the value of h be greater than the min-max values of the fune_
_tion @. Moreover, on the singular curve, the difference of the two values of p
is generally and at least of the order of _ (see the following Section). Thus,

cases o£ libration occur quite rarely in nature.

' In Part I of this research (pp.2 and 36), we differentiated b_tween re_1-

far orbits and s_Alar orbits. For the former, the quantity

: (N' + N") _'--N"x-- N

_s comparable to unity; for the latter, this quantity is of the order of/B or
smaller. It is now a question which are the contour curves in the discussion
_f Section 9 that correspond to singular orbits. Evidently, these contour
curves (projected onto the plane of the _, _) are located in t Le vicinity of
_he double-point curve up to a @4ztance of the o_der of/_.

_ection 10.

We _ave gecmetrlcalPy Investigat.d the nature of the solutions of the
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system (17) in Section 8. Below:,we will l'ivethe computation of these solu-
tions. ,

By using the definitions of the f_mction # and of the variable t_, giv_,
at the beginning of Section 9, eqs.(17) ot Section 8 can be ,ritten as follows:

The function _(o _ w) can be expanded _ the form of9

•---eco_ + _, + eL,_/'_+ .... (2)

Making use of the notation

.v + _", (3)
_' = ff_ + N" '

_J

we will obtain

_Co) = __Q, '
!

$(x) = a polynomial of thethird degree in P_ and _, /27

• a polynomial of the fourth degree in 0_ and x

moeoeeo..._.o.ooeeo._.ooe..._.#..Ooooee._. #e.g..

!.ngeneral, _(i) is a polynomial with respect to the quantities

x, _t md _'((,'--_.) cos :_.

For inte_Tating the system (i), we will use the Jacobi method. Let, thus,
S(_) be any function satisfying the equation

_/da _,}-h, (5

whe. h is an arbitrary constant. Then, the general solution o£ the system (1)

' is obtained by means of the relations

r"- ' d%--'-d_"

To solve eqo(5) in a general manner, we will throw the function h - _ into
_h_ form
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.- k-o(p, o)= (_,_+v_" +t,'-# + ---)0 +.-'V"+_,'*=+ ---)..

where _(t) and ,it) are pglynomials in pz with coefficients that depend on
--and on cos _. These polynomials must satisfy the identities

-- _n,+ _Va, = -- era.

• • . . ° . . • • • . ° . o

For _(_) tp(.a) • We, , ..,, we can select polynomials of the first degree in p2
will then pug
: : /28

:, _ #' = #.2- 2#,'e.

-_" • . ° A ° . • . •2_- "

2:_.iThe coefficients of the .po_nomial _(o) are, quite simply,

: - _=A, _, ==_', _=1.

C ,........:, (oil - , - "
-_ -"; 6£nce _ " is ip.d_emd_t of h, aK,and cos 2m, it is obvious that the co- -
]_-effici_aLs of the various powers o_ p in *{t_ and _{t) are polynomials in h,

,. ._,cos 2_. ..In,a_x}ti°n'....the coefficients of _{x} and of(_)_(_)are(z}indeDendent_:. .
:. of cos _ sRnc # :s xndepep_ent_of this. Finally, # and _ a.e linear

' _- -incos 2_ as-is the case for _",

7

.. In _iew of this, eq.(5) can be written as follows:

:-_.'_--_ l_- ,n_+,.-0. (7)
-T

'__. Here,-._band _- are functions of e given by the e_ansions
d_

_. ,_o=.,_. + :,_" + _,'_,_+ ...,

•_ '/',=".#_,_+;,_+v'_"_,+ ---.

,_;. Now, by putting

/ D =-_,_--_,,

,,_ ,.the correlation between p_ and • can be written as

, _
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Fi_Llly, the correlation between ts and w becomes

dG d,p, _ I dD
d_ ------__A �_--__" (9)

It is of interest to _nvestJgate the f_ction D _ more deta_3. Y.e can /29
expand this function _ powers of _, by putt_g

D =/_ + pDO_+ p,/_0 + ....

.. The quantities D(_} are polynomials in h, x, and cos 2.'. Here, D_°> and D(!_
are independent of w. We have, specific_lly,

dDm

Instead_of giving the rather complicated expressions for D_x) (_J DiaJ, $ 9_;

• .,; we prefer to resolve the function D into two factors and to in_ _.stigat_
specifically the expansion of the particular factor which might c_cel out.

__ For this purpose, we consider the equation
?

D- o, (io)

_ where h is assume_,as being unsown. For _ values of _, eq.(lO) admits of -
a single root which can be expanded in powers of _. It is easy to form the ex-

:" pansion of this root. In fact, it is here a question of finding the value of hi
expressed as a function of _, for which eq.(5) has a double root. From this i5
follows that

where _ is the root of the equation

dO

Which can be written _n the following form

, _ dew,) ,d_

' For small values of _, this equation has a single root _. _ne root in ques- ;_

_ion, as well as any function of this root, can be readily obtained by means eli

,_ _ Lrgrange series. This will yield

,,;. e(_',w)- e(_',_)+ (12',

__ + 2.+,.+__(ie!)."'_" +_''_r +""
-" _0
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: In view of the fact that the root (II) of eq.(lO) is given, it is possible

to resolve the function D into t_o factors. We will then put

D=_I.

The first factor has the expression

By setting _ = O, we have A --_4 _ h = D_ ) from w_ch it follows that the
second factor f reduces _ unity at _ = O. The quantities _ and f can be ex-

panded in powers of _. Their expansions are written in the form of

i'_- t- z+ t,P' + _,,/m+....

-" It is easily found t_at

.... zm,=em (p),

:,. - _m:_l +ram@,)=____..,W,_(-e'--x)ore2+,,,,
-_+ +- + a polynomial of the fourth degree in .. (]._ -

S[d_+"l'd'¢o' dmt.dmm
j,i+ +

_ _ " . • + . • • + • * • + + + • • • • . • .

_ It is not necessary to mire the expressions for the functions ftt). It is suf-

ficient to note that ftn is a polynomial in h, _, and cos 2a,as well as that
+ f(z) is independent of m.

.'" We will also require the trigonometric expansion of A. Let !

-+.' _=_, + ._,_,o,;_,,,,,4-_, co+4,,,+ ... (l_i

," be this development. On the basis of eqs.(l_), it is easy to form the coeffi-
cients _o �h,_, _, ... which can be expanded in powers of _ with coeffi-

:: cie_ts that are polynomials in _, independent of h. The coefficient is o£

+ the order of _. We have _erifled that the function _*) contains no6Zterm,in
:_ cos _,_. From this it follows that _t3) and A(s) are linear in cos 2m and that
'+' _, is o£ the order of _. +

'" Later, we will consider the root _(_) defined by.the equation

s: _s well as the two roots _' and ." of the equation

70
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_'_0.

Below, we give the first terms of the_r expansions in powers of _:

h(_)- _ + r-_"(_) +*",
x',_--N:_" + ---, x".=.N:N' + ---.

Thus, we will identically have

_:_ (x--x')(x--x")_'V:,

where _s can be expanded in powers of _ and reduces, at _ = O, to a constant

which is independent of _.and t O.

Fcr convenient values of the constants - and h, the coefficients Ao and _ -
take any values and, specifically, values as small as desired.

To form the _eneral solution of the canonical system (i), we will start /32-
from eqs.(8) and (9). It becomes necessary to differentiate several cases, de-
pending on the relative magnitude of the coefficients in the trigonometric ex-

' pansion (15) of the function 4.

Section ii. -

In this Section, we will assume that the ratios

.. dtl-- (_= l, _,s.... )

*, are comparable, in magnitude, with v or are smaller.

,- We will now define certain typical cases which may occur here and to which
",- correspond certain limitations imposed on the-parameters _ and h.

,' Thus, let _ be of the order of ,._. The various typical c_ses, to be dis-

cussed here, correspond to the va_-iousvalues of the whole number ¢.

'" i For ¢ = O, the quantity _ may remain arbitrary; h - _(_) must be comparable,

_, in magnitude, to unity. This is the case of so-called regular planets, treated
,_ in Part I of this research.

I
_ i For ¢ = i, the quantity _-can take any value, but h - _(_.)must be of the
,_ order of _.

_" _ In these two cases, the coefficients _, ..., are at least of the order
_ Of _4.

?I
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For ¢ = 2, 3, &, 5, one or the other of the quantities - - _.'and _ - _"
must be of the order of _e-1 or smaller; the quantity h - _(v) must be of the
order of u3.

In these four cases, the coefficients ._, ... are at least of the order
of _s since the various terms of these coefficients include one or the other of

the three factors _o4(P - w.)_, t_s_(_ - _), I_e, which all are o£ the order
of l_6 °

It is impossible to have e _ 6 since then the ratio A_:_o would no longer
be small.

Obvious_, it is sufficient to consider in all cases only the values of b
which are < h(a), since the function D must be positive.

We will investigate the six mentioned typical cases as a unit. Z3_

: In all these cases, the quantity _'D:__ can be expanded in powers of ._.
-Thus,the function p_ can be expended in powers of _ for e = O, 2, _ and in
powers of j_ for ¢ = i, 3, 5. The successive terms of the series are polync_i-
&Is in cos 2w. We can proceed further and assert that the functions

" can be expanded in the same manner.

: To demonstrate this, we will write, on the one hand, the two roots of
-" eq.(8) in various manners, depending on the sign of _ or of c& - x. Thus, we
• put

"-' if q', > O,_. e'= ¢,

., ,/,, + V_
c

'- e"=l -q' + VJD if q,,< O;

"' as w_ll as

.- ( ,j,_--z+ 1/_,

'_ i if _p,>X,

._'--z= z'--$_p,z + _.

_, _,- z -I-V-I}

'/" __._(- +

_,()

hl

._, :n these formulas, V_ always denotes the positive root.

?2

w ...... _ -_ ...... . _,_ _..,, _ J'_F '_'
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On the other hand, we note that the functions

are always expandable in powers of _. In fact, cb is divisible by h since /3/+
one of the roots O_ reduces to zero with h. Similarly, the function _ -
- 2_ + _ is divisible by h - _(_, w) since one of the roots p_ reduces to _
as soon as h assumes the constant value @(x, _). Finally _he quotients

_-"a.dz'--2cp,x+_°
h h--re(z, ,o)

reduce to unity for _ = O.

Let us now return to eq.(9), by writing it _u the following manner:

d._4 ,d,p.- 1 1/!-_dD=_p(,_). (I)
d{o

-- The function P(_) car.be expanded in powers of _ for ¢ = O, 2, _ and in powers
of/_ for e = l, 3, 5. The various terms cf the expansion are finite trigono-
metric cosine series of multiples of the argument 2w. Let [P] be the mean value
of the function P(m). The constant [PI is comparable, in magnitude, to unity
and can be expanded in powers of _ for ¢ = O, 2, _, and in powers of/B fcr ¢ =
=I_ 3, 5.

We will put (y being an arbitrary constant)

.,,;t, ":= ,:+___'+ lv"t + _', (2),_=.[y]-+ , [p]

-'- F(,o)= P(,4- [P])a,o. (3)

The correlation between w and w will then be

, ,_-w-,.:'{,o) = o. (I_)
' 1

The function _(w) can be expanded in powers of ;_ for ¢ = O, 2, /_ and in powers
, 9f/_ for ¢ = 3, 3, 5. The various terms of the expansion are f___te trigono-

metric sine series of multiples of the arog_ment2_. Finally, P(e) is of the /_'5
_rder of _ if e = O; and of the order of _ = 1 if ¢ --l, 2, 3, _, 5.

The relation (_) can be solved by the lagr_e formula. Let _(_) be any
function of _. We then have

';t)

:: H('°)=lI(w)4"_a+,'dw'! ato - - _" (_
h .' s--O J
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We can replace _(fJ_)by anF of the functions

_o.@, V@,--z, _=_cosco, _----qsin_.

Thus, it becomes possible to calculate the solution of the system (i) of Sec-
tion i0 for the typical cases considered in this Section.

Section 12.

let us now assume that the ratio

de
Jz

is not large and that, in addition, all the ratios

J, J,

are of the order of _ or smaller.

_ - let us consider the typical cases in which _z is of the order of _E with ¢
_ being a whole number.

_ For ¢ = 2, 3, _, 5, the quantity _ - _' or _.- _" must be of the order

of _e-s and, at the same time_ h - h(_) must be of the order of _e or smaller.
Then, A_ is of the order of _ for e = 2 and of the order of _e for ¢ = 3, _, 5-

The coefficients _e, •.. are still smaller.

It is impossible to have e > 6 since then the ratio

J_

would no longer be small.

In all four cases (¢ = 2, 3, _, 5) we can throw the function D into the
£orm i

D_!_(_--sin:co)g=!,_a 1_ sin'co g,

Where a is an arbitrary constant which can replace h, while g is a function of

• _iffering from zero and expandable in powers of _. Let

' be the expansion of the function g. The quantities g(')are polynomials in
_ _os 2,; the quantity g(O) aSways is a constant whiAe g_Z; depends on cos 2_

bnly for ¢ = 5. i

_ We do not knew the sign of the constant g(O). For ¢ = 2, g_O) has the sam_
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i

sign as the coefficient A of wYich we know only the analytical expression (see
p.57). However, to fix the corcept, we will assume that go > O. If this were

IW,

not the case, it would be sufficient below to consider 1 - G and w + -- instead
2

of _ and w.

Since D must never become negative, it is sufficient to consider the posi-
tive values of c. In view of this, two cases must be differentiated, depending
on the value of o.

First case: _> + I.

In this case, it is convenient to put

tr

and to replace _ by the variable

o_

u J I/l--k:sin't_
0

This will yield -.

Sin (_ _ Sn Ii,

COS (@ _ cn lg_ 4

" l/i-- k' sin_t_-- dn u.

We will denote by K the complete ellipti_ L integral of the first kind relative

to the modulus k, i.e.,

K_ ['---= d_, =..
Jl/1 -- k' sin t t_
0

It is well known that

sn(u+ 2K) =--snu,

cu(tt + 2K)=--onu,

dn(u + 2K) _dnu.

In view of this, we can write eqs.(8) and (9) of Section i0 in the follow-

ing manner:

_" 1 _' = 'Pi 4- ._ Vg-k-1 dn =, (1

' IJ d:t'_4..... = _!t_dtP, dnu:Ftt)[, k dD = '-,,, Q(=)' (2!
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Second case: 0 < a< + ].

It is convenient to put

k'_-a, sinto=bsind

and to replace w by the variable

f dto dd

.)'/k"--sin',# .#_u.....,V:_-,"
0 0

This will yield

sin ,. = k sn u,
cost,,= dnu,

1/k'--_sin ' _o----kcn it. i

': Let K be the complete integral of the first kind, corresponding to the modulus R.
(It should not lead to confusion that in both cases we use exactly the same

symbols k_-,K, u, Q(u), v, w, ..., for denoting certain analogous but different
quantities.)

In this second case, eqs.(8) and (9) of Section lO take the form

Q'= _p,+ !,g Vg-k cn u, (1',

" dT,. l dD=
d_tf t--Zdu= --' "_ -d[_tccnu--2V---g-:_t/h? Q(u). (2 t

The first and the second case can be treated together.

Let us note first that (01and _i - _ are of the order of ,o for ¢ = 2.

For ¢ = 3, _, or 5, the quantity qh is of the order of _ and _oI - R is of the
_ Order of _o if R - _,:is of the order of _-2; conversely, _I is of the order

of _o and _I - r.of the order of _ if it is _ - _" that is of the order of _z-2
In view of this, it is obvious that the functions

i q, !I_,_-- z =.d Q (u)
I

' Can be expanded+,in powers of _ or/_, depending on whether ¢ is even or odd." The various _erms of .theseexpansions are polynomials, in the first case (a > l_

i rith respect to k, k-A, and dn u; in the second case (a < l) with respect to k
md k cn u.

Let us find the correlation between u and t.

_Ib Let [Q] be the mean value of the periodic function Q(u). The constant [Q]
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is comparable in magnitude _¢ithunity and can be expanded ±n powers of 14resp.
_r_, depending on whether ¢ is ev&n or odd.

it is convenient to introduce the notations

/39

_,,t, ._ •N'+ _;"t+ _o,_t.. (3)v- [Q] + eonst.=,, [_]
It

o

The correlation between u and v is written as

u-v-,,,_(u)= o. (5)

The function Q(u) can be ex_oandedin powers of _ or/5. The various terms of
this series are odd periodic f_mctions of _, with the peri£d 2K in the first
case (_ > I) and _h in the second case (_ < i). Finally, Q(u) is of the order
of W if ¢ = 2, 3, _ and of the order of _o = 1 if ¢ = 5.

The relation (5) can be solved by the Lagrange method. Let _(u) be any
function of u. We will then have

__ _,,+1d" Jdn(v)_5c _, �p÷Ô�ì�p�”�H(,u)=H(v)+ _s¥i_d¢/--d-_--,,_,,,_, j. (6)
m--0 i

Let us study the nature of the function Q(u) in more detail. We have seen
above that the various terms of the expansion of the function Q(u) in powers
of _ or/_ are polynomials in k, k-l, and dn u in the first case and pol_ynomial,
with respect to k and k cn u in the second case. To form the function Q(u),
given by eq.(_), we will ha-#eto consider, in the first case, the integrals

,- .=

D*.,+t ==.j dn"+'udu, D_s=j dn"udu,
o o

" and, in the second case, the integrals

=.

C,,,,=k_-,+a J en*-,+'udu, Cz,=-ki".j'cn*-'udu.
o o !

Denoting by Lv(dn_u_ certain polynomials in k2 and dnZu and by 5v and 5_ /iO
_ certain polynomials in k , we will have for the first case (_ > l)

,,) D-_,+I= _ (1-- k' sill' to)'dto
]

,' ==k'sincocostoL_.,+i (1--k'sin'to) + t_is L�¢0

0
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= k'sn u cnu L2,+,(dn'u)+ 52,+,D,,

= 2_-_sin_acos_v(l . w) "k,
o

2s--2 -. 2s--3
+ 2s--i (2--k) D2s--.-- 2_-_ (2--k) D2s-4

= k__u u cn u dn u L2, (dn'-u) + 52. D, + 5'-.,u.

In the second case (_ < i), by proceeding in _ analogous manner,denoting by
M_(k2c_{u) certain polynomials in ka and kZcn_u a_d denotinj by Vv and V_ certain

polynomials in k2, we state that we have

C._,+l_-f(k-.--sin'to)'d(o
,J

0

= sin,; cos ¢_M-.,+, (k_-- sin 2_,) + 72.+,[d_0
,2
0

= k s ,u dn u M_,+, (k-.cn"u) + 7._,,1C,,

J 2s-I I 2e.--_,C2, = (k_- siu t t_)-_ d_ =' 2s--I sin _ cos _o(k-"-- sin-"t,,) ="-
0

2_--2 2s--3.,
+2_ss-i(2k,--l)C°,_o-- C_,___ . 2T_i_(2k'--,)

= ksn u dn u ken u J/_,, (/J en'u] + 72,C_ + 7'-.,u

To form the expressions of the integrals Da , D2, Cz, C._,it is c_:_nvenient

to introduce the notations _!

7_

;(U) = arcsin (srt u)- 2_. tt, i

Y(u) = arcsin (ksn u),
(7

Z(u)=dulog , ' :t /1UI/2:.11

_ _ luV:--i/ _}:_ I= -- 2-KK' u + du leg Oz _ -';_?6r'..../ _ i

_" ,Bore,_o and Oz are functions well known from t_e theorj of e=i2.pticfunctions.

iThefunctions X(u) and Y(u) have the period AK while the f_ncclon Z(u) has the
," period 2K.

i Using these notations, we obwiously have
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_r

D_ ---X(u) + 2K u.

C,= _'(u),

znd, in _ =o_]ance with the theory of elliptic functions (formulas by Schwarz,
pp.52, 62, 63),

E
D_ =, Z(u) + K u,

C, _ Z(u) + (EK+ F--11u.I

(Here: E is the complete integral of the second kind. correspording to the
modulus k.)

Let us now return to eqs.(3) and (&).

The mean %_lue [Q] of the function Q(u) can be expanded in powers of
or/_. According to the above statements, the coefficients of the various

rx.wersof _ or/_ are exp?essions which, in the first case (_ > ]), have the
form

and, in the _econd case (a < 1), have the form _4_

The ouantities _I, BI, Y_ are polynomials in k and k-I , wh_le _ and _a are
polynomials in k.

The function [Q] • Q(u) can be expanded in powers cf _ or Cry. The various

terms of the series, in the first csse (a > 1), have the form

aiX(u) + bi Z(u)+ snu cn u L (dnu);

and, in the second case (a < i),

a3 Y(u) + b_Z(4) + ]csnudnuM (kcnu).

Here, L and Mare polynomials in dn u resp. k cn u" ax, b_, aa, ba are con-
ztan_s; a:, bt, .c,_,the coefficients of L are polynomials in k and k'X; am, bz
and the coefficlents of M are polynomials with respect to k.

Let us finally return to the general equation (6). Consider a fun=tion

_(u) expandable in powers of _ or f_, where the various terms are polym,mials;
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in the first case (u > i) with respect t. the quantities

_ _ (8)sn,,,enu,dnu, X(.),Z(.);k,A_*,6_/,_;

and, in %he s_cond case (_ < i), with respect to the quantities

(8,)
sau.cnu,dnu, }'(.).Z(#);k,_:

Let us substitute, in this _unction ,q(u),the quantity u by the variable v. In

_view of eq.(6) and of the character of th: _unction _(v) established above, it
is obvious that the function n(u), consi._-cedas a function of v, can be ex-

panded in powers of _ or _, %_th the various terms being polyr_mia]s; in the
:firstcase, with respect to the quantities

_- Shy, en_, dnv, X(_), Z(v); k, k-', 2_, K; (9)

z, and, in the second case, with respect to the quantities

-: B (9')
-i _ Shy, ¢nv, dnv, Y(v), Z(u); /_, ._-

:- The functions"(9) and (9') are periodic in v, with the period 2K or _K.

Consequently, it will -bepossible to expand these functions as well as the
:- _various terms of fl(u)considered as a function of v, in Fourier series in
- multiples of the arff_nent

'- _ _: _+:/%"+ At'

w=_ =_-_:,=-q-e]--t+v- (lO)

However, these Fourier series converge too slowly as soon as k becomes close to
_ _nity. It is preferable to retain the various terms of the expansion of the
L<_ .functionn, expressed as polynomials of the functions (9) resp. (9') and to

,- icalcu/atethese functions (9) resp. (9') over the intermediary of the func-
-, .tions 0.

The elliptic functions sn v, cn v, dn v are expressed, over the interm.edi-
_aryof the functions %, by the following formulas :

_,,,C",_,1,,/___)_ ,,,V---i

-8O

L'._._, " " '>',_'_:X' ""'
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/ v , t , ; , ]l /t;l'--I / ]l
o.(o/_)°'12K")°_P'-;I°'I-zA_/-4

...(o,-,

For abbreviation, we have put there /_

K: --

_=KV--l.

These formulas must be complemented vy eqs.(7), writing there only v instead
Of U.

Be2ow, we give the expressions for the functions 8:

O, (x/z) -----1-- 2q cos 2=:.7:.+ 2q _cos 4z;c - 2q _cos 6z_r +...,

3_ (z/z) = 2q'/' sin x_--2q'l, sin 3x;_ + 2q=.',sin 5z:r .... , (12)

0=(z/r) = 2q',',cosx;r + 2q'_,cos 3z;r + _.'q=:,co_ 5z,r +...,

O=(z/r) == ] + 2qeos 2zK + 2_ cos 4z;r + 2qScos6z_r-I- ---;

1--q'(e _-='''+ e--_='=) + q_(e 4='-_+ e-4='._).... ,

V_i#, =
=oq":,(_'-_--e-*'-_)--_":,(P*'._--e-_='.')+...,

,_,(_'v-i/ _)=:==

= _".',(e='-_+ e-#'")+q':,(e_*'-_+ e-3=_-)+...,

-- 1 �q'(e-_"''_+ e-_'._) + _'_(e_''._+ e-_='.,1+...,

with the notations

q==er._l/_;i===¢--K _, _,==¢ _ _, --£;n.
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By means of all these formulas, the function (9) resp. (9') "s always
readily calculated. If ka < 3, we have K < _ and q < 0.0&321. It then is

series (12). If, conversely, M ; _, then weimeful to apply the trigonometric " a
have K > _ and q' < O.0_321. In this case, the exponential series (13) are Z_
to be preferred. Evidentally, it is sufficient to consider there orly the
values of v in the domain

O<v<2K.

This will yield

° -

1 < e='-"_ e-"K. < q,-_.

According to the above statements, it is obvious that the functions peri-
odic in v and having a period _K, which enter as coefficients of the various
powers of _ or/_ into the expansions of the functions H(u), remain finite and
well-determined even in the case in which the modulus k infinitely approaches
unity. By putting k = I, we have the limiting case which separates the firs_
case from the second case. This will yield

L.

- K=_, K'=_, q'_-O;

_" e e

sn v --_Z(v) -- _-+ e--=;"

@

on v _---dn v t

ee .Jr e-v

ICY-- e-'_,
_ X(v) = Y(v) -_ arc sin _e_+e-_/

The function H no longer is periodic but asymptotically approaches a val_e con-
stant for v = •

- We can then replace iIby any of the following functions:

-Q

u, ¢, I/_---x, _=¢cos{o, ,_=esin_o.

Thus, it becomes possible to calculate the solution of the system (i) of Sec-
tion I0 for the typical cases (c = 2, 3, _, 5) considered in the present Sec-
tion.

,, In the first c_se (_ > I), the argument • may increase indefinitely and /16

dw
possesses the mean motion -_- which is at least of the order of _3 [see

eq.(lO)].

In the second case (a < I) libra%ion is present and the argument _ remains

82

o

1965019998-083



enclosed between two limits. Its mean motion is zero.

dw
In the two cases, the period 2.: --_ of the solution of the investigated

canonical system is extremely long and at least of the order of _-s. The period
tends toward inf£:dte as _oon as the l_iting case is approached where k = i.

In the zecond case (case of libration), we can also put k = O. This will

yield

f_ Kf =

K=2, _, g=o.

snv-sinv, cnv=cosv, dnv=l,

X(r) - Y(v) -- Z(v) -- O.

Because of the nature of the function Q(v), we also have

_(@--0, u-_.

In addition, in this entirely pa_ icular case, we have

sin (_= ksin,J ----O.

- The point (_, _]) coincides with one of the libration posits P_ (see Section 9)•

= This leaves a rathcr _xceptiona! case to be treated, by assuming that the
integration constants x and h take values such that none of the ratios

will be large while all the ratios "<

.J, d,

_will be small. Then, the discriminant D can be given the form

i D ffi,.' (cos' 2(_ +. cos 2_ + _) g,

:_ _here _ and _ are two finite arbitrary constants which can replace _ and h,

_hile g is a function of m differing from zero for _ = 0 and expandable in

iPowersof _.

In this case, one or the other of the functions p and/_ - _ is of the

S3
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order of/R. We now are in the viciR!ty of the contour curves represented in
Figs.l and 3 of Section 9.

It is then expedient to replace _ by an auxiliary variable u, defined by
the relation

u =. cos i 2_ + a cos2_o+
@

This again leads us back to elliptic functions. Also in this case, it is pos-
sible to form the solution of eqs. (1) of Section 10. However, a complete ar_-
1j_ti_l _iscussion would lead too far here.

SimiLarly, we will not discuss the more special case in which the three

first _efficients Bo, Az, A_ are either comparable in magnitude with be or else

" are sr_ll with respect to _e. In th_s case, if it can be reali_ed at all, the
three parameters x__, a, and h are quite close to certain special values that

" satisfy the equations !

_ _ Je = J: = -J_=0. :

:: Section l_.
/

We will continue the integration of the system of secular inequalities, by
-" again making use of the conditions given in Section ii.
_J

_ Equation (I) of Section ii can be written as

/A8

,, _c_ (N' + ,V").'+_ (I)

-%

:" .The second member of this expression can be expanded in powers of _ or ,/_, and
'_ ;the %_rious terms of this expansion are finite trigonometric series in cosines
:": of multiples of the argument 2_. The constant term of R(_) is of the order

'of _ ; the principal periodic term, namely that in cos 2_, is at least of

_+|-
'_ _the order of _ •

" _ This equation (i) has been used already for expressing _ - w as a periodic
!functionof a linear argument w. The difference • - w is of the order of _ if'
is = 0 (case of regular planets) and of the order of _ if ¢ = i, 2, 3, _, 5.

_i Let us now pass to eq.(18) of Section 8, by writing it in the form of

_. "-_- -,, 21'==¢ "==8(_). (2

.%k - _ ....

i
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The secor_ term can be expanded in powers of _, where the _mrious terms are
polynomials in p2 and o2(p2 _ x) cos 2_. The character of the four first of

these polynomials is obtained fz_m e_.(!9) of Section 8, after differentiation
with respect to H.. We will replace p by its expansion in powers of _ or _ in

accordance with eq.(S) cf Section lO. Let us note that the oeri_ic Dart _f p2is of the order of @2 if ¢ = O, 2, 3, &, 5 and of the order of _ if'¢ =
Thus, the function S(_) can be expanded in powers of _ or j_. The w.rious term_
of its expansion arc finite trigonometric cosine series of multiples of 2_.

The co_sta=t t.erm,of S(_')is of the o:_er of _ ; the principal periodic term...,
namely that in cos 2w, is of the order of @4 if ¢ = O, 2, 3, _, 5 _nd of the
order of _7/_ if ¢ : I.

Equation (2) can be used for determining _.''" as a function of t. In eq.(5)

d_"
of Section _i, we "._!lthen substitute S(w) for H(_). Thus, d-_ appears as a

trigonometric series, ordered in cosines of multiples of the linear argument 2w.

Let

_e the constant term.of this trigonometric series. The quantity v" can be ex-
pand_.din powers of _ or ,/_,where the first term is v_. Putting

'_ w" = ,. u"t + 7",

"" i

" where y" is an arbitrary constant, we find after integration that the difference
:- '_"- w" can be expanded in powers of _ or _ with the various terms being
' finite trigonometric sine series of multiples of the argument 2w. The principal

coefficient, namely, that of sin 2w in the trigonometric series of w_ - w", is
of the order of 2 if ¢ = 0, while it is of the order of _ ix"¢ = 1 and of the

: G

order of _ a if _ = 2, 3, _, 5- The ratios of the other coefficients to the
principal coefficient are at l_ast of the order of _.

' , After having expressed the differences w - w and w_ - w" as periodic func-
" tions of the linear argument w, it is easy to give the complete solution of
" eqs.(I) of Section 3, always remaining within the assumptions of Section i]. In
" •fact,we first have the relations (17) of Section 3 which connect the variables

_,*, ,_,*, _,*, ,_*
,tothe variables

'f' '/'" (5

Then, by means of the transformation (12) of Section 8, these latter variables
are expressed as functions of the variables
I
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w

_: = ecos (,_-.'D, '7.= esi. (_o-o,:), (6)
,, • ,,r _ z_. OOS(o_, 17Q_ 8In (_e"

i

Obviously, the variables (&) are of the order of _. They can be expanded in _._
odd pnwews of _. The coefficients of _)_: |these expansions are poly-
nomials of the degree 2i + i vrithrespect to the variables (6). instead of p

and _ - z, we now introduce their expressions as functions of -cin accordance _
with Section ll. Thus the variables (&), divi_e_ by i_, are fira21y expanded
in powers of _ or j_, with the _rious terms being finite trigonometric series

. of the two arguments _ and _, which are kn,_wnas functions of t.

Next, we wi]l integrate eqs.(2) of Section 3. We noted above that the
= second of these equations simply yields

u,*_ :. (7)
. B

)

:, In the first of these equations, we can put

-_ y,*_-nt + o + x, (_)

?, . !
=_ iwhere n is a still unknown constant, c is an arbitrary constant, and X is a

-_'_ 7periodicfunction with resF ct to the two arguments w_ and w. Since eqs,(i) :
and (2) are given, the equation which will yield the function X assumes the form

sw

.: ff[o_ . + R(_)= as,* n. (9'

._ _ By writing only the principal termg, we have

: _' - dw"
•,; ,S(co)_-Ti- + "'" R(_o) dw=-_+ ....

_, _hese terms are, respectively, of the order of _ and of the order of _ •
_ The terms which are not given here are smaller.

i

T Let us first express the second member of eq.(9) as a function of the ,
variables (6). In eq.(6) of Section 6, we gave the series

l

d$,,,o,o,o /._
dF* dFo* tl o,o,o,o_.= 2#,_OOn) '
d _ * dx_* "--d-__- 'U'.o

": '._aere the G(') are certain po]_vmomialsOf the degree 2m + 2 with respect to the

!variables (5). After performing the transformation (12) of Section 8, we will
ihave

j'
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_n--O .'/_--0

where G!_) are certain polynomials of the degree _n + 2 with respect to the
variables (6). Specifiea!iy, using the notations of Section 6, we obtain

_(0) f,O, O,0 n f,O, !, 0 _r

G_) .oo,e,O .,-_o,!,0_:, f,o,2,o
= _o,o + -_,,o _. + ,-o,o (e_--e_ 2) (lO)

,_o,o,o ,_,o 2GO:_o,Oecos= _o,_, + _o;o _ + (_-_D-

In accordance with Section ll, the quantities ,o and _ - _, which enter
• . -t ! _ t

the expressions (6) of the varxables S., _., _, _ can be expanded in powers
of _ or _, with the various terms being finite trigonometric cosine series of

dF*
multiples of the argument 2w. Thus, the derivative -- in the second member

dxl*

of eq.(9) can also be expanded in powers of _ or J_, with the various terms of
the expansion being finite trigonometric series of the cosines of multiples of

the two arguments w_ and w.

In view of this, it is easy to integrate the equation of partial deriva-

• tires (9) and to express X as a periodic function of w" and w.

: Let f be any periodic _unction with respect to the arguments _ and w. Le_

us denote by If} the part of f which is independent of w..

Thus, eq.(9) is partitioned into the two following equations, which are

_ completely independent of each other,
/,52

* d(Z--(_)) dF* [dF*l
,.7.--(X_)d,_;,s(,o)_- a., R(,4=-a-_,.+/_,*l (n

d(x)R(,o)- IaF*( ,,d., -/_,,j- • (_.2
I,

These equations, obviously, can be satisfied by putting, for X - {X}, IX], and
!n, certain series in powers of _ or J_.

: The successive terms of the expansion of X - _X} are finite trigonometric
_sine series of multiples of the two arguments _ and _. The function X - IX]

!is,_in addition, of the order of _. This is due to the fact that dtdW'---_'is
dw

ilargerthan -_- and is of the order of _, while the second member of eq. (ll)

is of the order of _s. [See the expression (iO) of G(.°) .]
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i

In the expansion of the function (X], the various terms are finite trigono.
metric sine series of multiples of the argument 2w.

We know that [X] is of the order of _3 for the so-called regular p_anets
functions [G(.I(see Section 6). It follows from this that the )] ar:d[_(,s)} are

polynomials in P_ with constant coefficients. Incidentally, this could have
been demonstrated directly.

In view of this, it is easy in general to find the order of magnitude of
the *dnction IX). We know that the variable part of p2, considered as a func-

tion of _, is of the order of _alsfor ¢ = 1 and of the order of _2 for s = O.
2, 3, A, 5. Since also the indicated form of the functions (GL.I)I_nd [G(2)J is

i

given, it can be concluded that the variable part of the function dF* is !
dx1* i

of the order of _12 for e = 1 and of the order of s for ¢ = O, 2, 3, _, 5. In:r
addition, the principal term of the function R(w) is constant and of the or_Jer

of _ . From this it follows that the function IX] is

: of the order _s I_',I_',Idl',P, _';',

.... for _= O, l, 2, 3, 4, 5.

Let us finally pass to the constant n. Below, we give the first terms

_ iof its expansion: l

r [ 1' O' O' 0

..,, ,_= =._____,dFo,o,o,o_,., (0_,o,o+ _:_,o_).... . (!3i
- : dZt*

_ Section _.

_ _ The problem will be treated here in a manner analogous to the case in
_ !Section 12.
7 -i

_ Equation (2) resp. eq.(2') of Section 12 can be written as

"' du .(N'+_.")_J+_T(u). (i)" at Q(u) =

iThe second member of this equation can be expanded in powers of _ if ¢ = 2, _ :
land in powers of _ if e = 3, 5. The successive terms of this develo_ent are I

_, Ipolynomials; in the first case (c > l) with respect to k, k-_ , and dn u; in thel
!second case (c < l) with respect to k and k cn u. The term independent of dn ul

iresp, kcn u is of the order of _ a . The other terms are at ]east of the
" a+

',orderof _ a .
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We have demonstrated above that the difference u - v can be expressed as a
periodic function of the linear ar_iment v, defined by eq.(3) in Section 12. To
arrive at this result, it is sufficient to replace H(u) in the general equa-

tion (6) of Section 12 by u. In this manner, we find

u--v= Z= _ ,-i_,:_(Q(v))'+_. (2)
a--O

Thus, the function u - v is expanded in powers of _ or,/_ d_pending on whether ¢
is even or odd. The various terms of the expansion are polynomials; in the
first case (_ > ]), with respect to the quantities (9) of Section 12; in the
second case (_ < !), with respect to the quantitie_ (9') of Section 12. The
difference u - v is of the order of _s for ¢ = 2, 3, h and of the order of
for ¢ = 5. This is the result of our above statemenos as to the order of magni-

tude of the function _(v) on P.77.

It would be possible to substitute the argument w for v by eq.(lO) of

Section ]2. Thus, the difference _ u - w appears as a periodic function in

w, having a period of 2n. In view of the expansion of [Q], indicated on p.76,

iit is obvious that the velocity dw of the argument w can be expanded in powers
dt

iof_ or v_,deoending on whether • is even or odd,and that the various terms of
the series are polynomials; in the first case (a > i), with respect to the !

iquantities

K' 2K

and, in the second case (_ < l), with respect to the quantities

(3'

Let us now pass to _q.(18) of Section 8, written in the form of

_,o. (,,.
dt tk _

We wish to express _ as a function of the iiuear argument v. By putting

" b'(,_)[Q]
V(u)ffi IW')i,_+i,- (.V' +

landby applying eq.(6) of Section 12, we obtain
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', dv (v)Q(v)dc___,-_V (u)= V(v)+ _,--_--dv (5)
® ,,+1 d" /dV(v)._.....+1_

+ _;¥-i,d¢/--_-,) -t_tv" I"

It is convenient to integrate the second term in steps so as to avoid /55
the appearance of tilefunction _(v) under the integration sign. In view of

,.dO(v) q(v)
-dr-- = 1 -- -_,

the following expression is found for the integral oz"the second term:

_,(v(v)-Ev])C_(v)+ f (V(v)-[v])lTb-TIq(v)llao
I

,Here,we denoted by IV] the mean value of the periodic function V(v).

:, Thus, after integration, eq,(_.)will yield

l

,, _, _,.+. d.-' ia¢(,,)(_I,_)).+,)+ z..Js.), l!d_-_-d_-

,, .The aecular part of the second member has the expression

',r

_- [VQ] WO]t
,- [ql v=- [Q] .

_Inview of this, we can put

, .=WQI w"
f'" -t-_-' --_,,,"t+r", (61

E
t

q

where V" is an arbitrary constant. For abbreviation, we will "ntroduce a nota-
_tion 1W putting

q(")= -_L"L--tv!.q(,,). (7)
W(u)= (V(u)-[V])-[-q]- (iv'+ _"),.z+.

[
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This will fSna]ly yield the wanted expression

"-w" (( ])O(,o. = W(v).-[WS)dv + t' (V(v)--[V v)
t

...,,.' (O(v))'+')+ _-i_ d_--_i
S--I

The velocity _" of the argument w" can'be expanded in cowers of _ or/_,

with the varioug terms being polynomials; in ,,hefirst ca_e (q > l)_ with re- :
spect to the quantities (3); in the _econd case (_ < I), with respect to the
quantities (3'). For _ = O, we have _" = v_'.

The functions (V(u) - [V]) and W(u) can be expanded in pu_ers of _ or Y_,
with the succeseSve term_ being r_lynomial3; in the first case (_ > ]), v_ith

-, respect to the quantities dn u, k-l E, k, -_-, -_-_-;in the second case (_ < 1),
E

;_ithrespect to kcn u, k, and -_. It follows from this that the function (8)

can be expanded in powers of @ or /_, depending on whether ¢ is even or odd, and
that the various terms of this expansion are polynomials; in the first case
(a > !), with respect to the quantities (9) of Section 32; in the second case
(a < 1), with respect to the quantities (9') of the same Secfion.

It is easy tj gSve the nrincipal term of the differen_ ",_- w" by neglect-"
ing _ with respect to _uity. In fact, since the formulas ()Y) cf Section q as
well as the principal periodic part of 02 considered as a function of u are
given, it is easy to find that the function W(u), in the considered approxima-

tion, is a polynomial of the s@cond degree with respect to dr,u resp. k cn u,
depending on whether the first case (_ > i) or the second case (_ < I) is in-

)'- w" isvolved. Thus, neglecting p with respect to unitT, the function w.
homogeneous and linear; in the first case, with respect to the functions X(v)
a:d Z(v); in the second case, with respect to Y(v) and Z(v). In the most im-

iportant case in which _ = 2, we readily obtain

_;-.-F-N(,;X(v, -1-.... O,c,). -I- -.., if_> 1;

N"
(,,_--w't=-,¥_--.4_-_ i Y(v) + .... d,c,)_ + ...o if(r< 1. (,

:Inthe Aess frequent cases in whSch ¢ = 3, A, or 5,Ait is necessary to add a
Iterm in Z(v). This second term is of t_e order of_S foA-e --3, of the order
iof _o for e = &, and of the order of _-_ for ¢ = 5.

It is highly interesting that the argument _,'_thus contains, under the
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condition_ of Section 12, a periodic term which does not vanish with _. This
term will be de_ted by

a._..

• From the various transformations which link the variables x_, y_, _k , _ of
: Section 2 to _.hevariables _, _, _, _ of Sectioi_.8, iS is easy to demon-

I strate that the ar___en+_-_ differs from t_e long._tudeof the node _ only by

small periodic quantities of the order of _. Thus, the quantity -5o__ is

! nothing else but the most i_-.r+_ut periodic inequality Jr.the longitude of the
node of the.orbit of the m_-)r planet.

!

The argument e. contains an analogous inequality which we wil2 denote by

6oW. and which is obtained by permuting _ and N" in the above factor of X(v)
resp. Y(v).

: The corresponding inequality in the argument _ = w'.+ _._thus will be X(v)

• resp. Y(v) which could be predicted from the formulas (7) of Section 12.

After ha_Lug expressed the differences -- u - w and _ - _' as periodic

-functionsof the linear argument w with the period 2n, it is easy to obtain the
-'--complete solution of eqs.(i) of Section 3 under _he assumptions of Section 12.

We know t_t the variables
.;;

\- _ -_'*,_,°._,'._,* (9)

2_.of Section 3 can be expanded in odd powers of /_ and that the coefficients of

=_. ;_)21+l in these expansions are polynomials of the degree 2i + I with respect
" d_ the variables

-_... L - ecos(,o- ,_.), _,:,= e_=,"('_--_'_),

'" _Wealso know that the functions

, _ cos _o, _ sin _,,
': i

_ _eanbe expanded in powers of _ or/_, with the various terms being polynomials

_' finsn u, cn u, and dn u. Thus, the variables (9), divided by/_, can be ex-
'- !p_ndedin _wer__ of _ or/_ where the successive terms are polynomials vPAth
,: Irespectto the functions i

'. ' It is necessary to integrate also the first of the equations of the systeml
_,: i(2)of Section 3. As in the preceding Section, we will put i

_- 92

i

I

1965019998-093



,s.*= ,_t+ ¢+ x (11)

w_ere n is a still unknown constant, c is an arbitrary constant, and X is an un-

known function periodic with respect to the two arguments _ and u. Since
eqs.(i) ard (g) are given, the function X must satisfy the equation of partial
derivatives

dX _ dF*d,-_U(u)+ _{u)= dx,*--n" (12)

The derivative in the second member can be e.xpandedin powers of _ or/_, where
the various terms are polynomials with respect to the functions (iO). We can
expand these terms illfinite trigonometric series, arranged in accordance with
multiples of the argument w_. Let us denote by [f] the mean value of any func-

tion f'""_.j,periodic with respect to w:. In view of this, eq.(12) is parti-
tioned into t-_oexpressions:

I I

d{z} _, ,_ [dF*/
d,, -,°, =-lab?I-"-

We know the nature of the functions U(u) and T(u). Their principal terms ]59

are constant and of the order of _ resp. _ s . We also know, in accordance
with the research reported in Section 13, that the second member of eq.(13) is

of the order of vs. Obviously, we can satisfy eq.(13) by a function X - {X} of
the order of _ which can _z expanded in powers of _ or/g, with the various
terms of the expansion being polynomials with respect to the functions (10).

Thus, the function X - {X}, divided by _, is of the same type as the functions
(9) divided by/_. It would be very easy to write down the first term of the
considered expansion of the function X - {X].

', We can then pas_. to eq.(Ig). In accordance with the data in Section 13,
We first have

_I_dF*l=.dF,*

- ,,,,{o_}- ,,,,[Q_,}- :,. {G_}.... .

The three first terms are constant. The terms in _a and _4 are polynomials in
P_, with constant coefficients. The following terms are polynomials in ps and

icos2m. By introducing for pZ and cos 2_ their expressions as functions of u, i

' the second member finally will b,;expanded in powers of _ or v:_,with the vari-:
'ous terms [as for the function T(u)] being polynomials,in dn u in the first i
case (o > i) and polynomials in k cn u i/_the second case (c < i). The variable
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pa_ of P_ is of the order of _¢_ if ¢ = 2, 3, i and of the order of _2 if ¢ =
= 5. It follows from this that the variable part of the second member of

eq.(]_) is of the order of _ z if ¢ = 2, 3, _ and o£ %ne order of _6 if _ =
= 5. We car,divide by T(u) which is approximately constant and of the order of

2+ +
and then select n such that the mea,-value of the quotient, considered

as being a function of u, wi]l vanish. Th_, the periodiccfunction IX] is ob-

tained after quadrature, approximately like th? function Q(u) of Section 12.
The function IX] can be ex_nded in powers of _ or J_, depending on whether e is
even or odd. The terms of the expansion, in the first case (s > ]), .havethe
form

a'X(u) + b_Z(u) + snucnuL'(dnu) /_

:- and, in the second case,

: a"Y(u)+ b"Z(u)+ ks,udn _L"(_cn ,,).

• where L' and L" are polynomials in dn u resp. k cn u. The q_,ntities a', b' ,
_ an, b" are constants. Here, a' , b' and the coefficients of L are polynomials
__:with respect to the quantities (3); a", b" and the coefficients of L" are poly-

nomials with respect to the quantities (3t). The f_nction [X].obviously5is of_. %he order of I_,if ¢ = 2, 3, & and of the order of _2 if ¢ =

--• The constant n, which is known as the mean absolute motion, can be ex-
:_ ipandedin powers of _ if ¢ = 2, _ or in powers of/_ if ¢ = 3, 5. The various

ter_m a/'epolynomials; in the first case (_ > I), with respect to the quanti-
•_ ties (3); in the second case (_ < I), with respect _o the q_antities (3'). The

first terms of the expansion of n are given in eq.(13) of Section 13. The
_; quantities (3) resp. (3') appear only in the following terms, not written here.

-_ Section !_.

• Now, al].integrations of the problem have been performed. The integration
"" iconstantsare primarily
d,

,'" XI@, X, _,

•- Which correspond to the three first integrals of the problem and seconf'ly

'* 7, /', ¢, !

_" which have been introduced after hhe three quadratures and which enter only the l
arguments w, w", and nt + c. !

"_ , We still have to indicate the general form which can be given to the vari-I

' ables x_, Yx, _,, _ of the system (3) of Section 2. These variables ar_ iinke_
_o the variables _, y_, _*, T_*,discussed in the preceding Section, over the _i
transformations (12) of Section 3. We mentioned above that the differences

%
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* * _k _*, r_ -_ can be expanded in powers of _, _k*,'_*andxx - x_, Yx - Yl,

in multiples of the arguments y# and t. In these ex_ansions, we introduce the
already defined expr_ssions for Yl*- (nt + c), _k*,_" as functions of the two ]61
arguments _ and _ under the conditions of Sections Ii and 13, and as functions

of the t_ arguments 4, and 17
_ -_- u under the conditions of Sections 12 and iA.

Thus, the variables

x,. y,--(_t+ c), _, _k (!)

are expanded in powers of /_, The various terms of the expansions are trigono-
metric series under the conditions of Sections ll and 13, with respect to the

arguments

t, nt+c, w:, _,,

and, under th_ conditions of Sections 12 and l_, with respect to the arguments

wr _1_

t, .t +c, c_., 2-_u.

- 17

It is possible to replace _-'" w" and _ - w resp. -_- u - w by their ex-

pressions as functions of the argument w. Thus, the variables (1) are expressed
by series whose terms are arranged in powers of 4_ and in multiples of the four
arguments

t, nt+c, w"+_,(o", w.

In the third argument, the inequality 6oW_ which is not small with respect to _,
must be retained. In the cases of Section ll, Lhis inequality appears on_v if
the exponent ¢ is _ or 5. In the cases of Section 12, the "elementary" inequal-

ity in question will continue to exist.

In this Section, we have assumed up to now that the elliptic functions,

&ntroduced in Sections 12 and l_, are expanded in Fourier series in multiples

N

of the argument -_ u resp. w. However, if the modulus k is close to unity,

_hese Fourier series converge too slowly. It then becomes necessary to retain

the elliptic functions as quotients of the fanctions O. Then, in the expansionI
of the variables (1) in powers of _, the various terms are trigonometric series

of the two arguments nt + c and t, with coefficients that are polynomials with :
irespectto the functions

811_, one, dD1£,

X(u) resp. Z(u), Z(_)
wl

sin (o", COS we
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or, if preferred, with respect to the functions

Shy, cn_, dnv,

X (v) resp. Y(_), Z(n)

sin(u" + 6._:),cos(w" + de_:).

"which incl1_de only the linear arguments v and w".

:<

• t
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R_EARCH ON THE MOTION OF L_-NORPLA_ETS _**_

Part III

H.v.Zeipel*

In Parts I and II of this research**, we discussed the principles of a
general theory of "ordinary" minor planets for which the mean motion _s not

approx_ately commensurable _ith the mean motion of Jupiter. In this Part III,
we -__ll3uppose that the ratio of the mean motion of the minor planet to that of
Jupiter differs from a rational number

P+9 lq= 1,2,3...
_pmd q firstrelativesl

by a quantity comparable in magnit_x_ewith the square root of the _ass _ of
Jupiter. Such a planet is known as a "characteristic" planet of the type

p+q
P

We will everywhere retain the canonical form of the equations, integration
is al_ys possible from the formal vie_wpointby means of oemiconvergent series,
assuming that the eccentricities and the inclination are small quantities. In

the expressions of the coordinates and their velocities, the time appears /2
only, and in a linear n_'.muer,in the ar_ments of elliptical or trigcnometric
functions which re_ain finite for all real values of the arguments.

Let us briefly indicate the procedure used here.

We start from the canonical system (3) with four degrees of freedom, given
in Section 2 of Part I. Among the ca,_onicalvariables

zk,_'k,_k,r,k (/_= I.,2)

defined there, Yl and Y2 = t denote the mean longitudes of the asteroid and of

_Jupiter;_I and Titare of the order of +he eccentricity while _ and _z are of
the order of the inclination. We will replace these variable_, in Section 16,
by the following new canonical variables

i

* Received 6 De_ember 1916.

** See Vol.ll, Nos.] and 7 in K. Vet. Akad. Arkiv fSr matematik, astronomi och
fyslk.

_* Vol.12, No.9
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which differ from the old variables only by quantit.iesof the order of the
mass _. The characteristic function _ of the new c_.lonicalsystem includes the

two arguments Yl and _, = t only in the combination _ = P_I - (P + q)Y_. From
this it follows that the new spstem can be reduced to three degrees of freedom
with the variables xl, _l, _t, _ This reduction of the problem is always
possible r_ matter what the ratio of the two mean motions might be. In addi-
tion, the reduction remains applicable no matter what the values of the eccen-
tricities and of the inclination become. It is only necessary to assume that
the t_ orbits do not intersect at all.

To reduce the problem further, we will limit the.calculation to minor
planets known as characteristic p!anets. In Section 17, we will introduce new
canonical variables

• . • -._ • ._ .
such that the diffe_ences_xa.- xx ,_Y_ - Yl w111 be of the order of q • i, where-
as the differences _k - _{, _ - _" will be of the order q with respect to the

small quantities _*, T{, and /_. The characteristic function F* of the new
canonical system is indeper_ent of the argument Y1*. From this it follows that
:_ is a constant and that the new system is composed of a canonical system with

two degrees of freedom between the variables _k*and _*, and of an equation ex-
pressing the derivative of YI*as a function of the variables _* and I_*. The

V _• variables _*, I_*,and .z include all so-called secular inequalities.

-" In Section 18, we will investigate the analytical form of the character-
: istic function F* in more detail. In the same Section we also will giv_ de-

tailed expressions for the principal terms of its expansion.

The nex_ Sections are concerned with the integration of the equations of
_' o • --_

secular variations. We first obtaLu a partlcular solution in which _ and
assume constant values _I*= _, _l*= _-_= _ = 0 for which the function F* is

stationary. In the general solution, the unknowns _k*and execute small os-
cillations about these constant values. The unknowns _k*,_ as well as the os-

cillating part of the argument YI*maY ordinarily be expanded in trigonometric
series of the two arguments w and w", linear with respect to time and having
velocities of the order of _. if q > 2, the coefficients of these expansions
are rational with respect to the moduli of eccentricity and inclination (denoted
_y ¢' and ¢" and introduced as integration constants) as well as with respect
to the eccentricity e' of the orbit of J_piter and the square root of _. If
q = ±, the mentioned coefficients are polynomials with respect to 6', ¢", e'
and_.

i In the mentioned expansions, certain integration divisors appear. If one !
of these divisors becomes too small, the series used become illusory. In this

icasc,the planet wCll be known as "singular". In the opposite case, the planet I

_isdesignated as "regular". The singular planets of the type _ have thei_

mean motion in the vicinity of certain well-defined values located symmetrically
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p+l p+2
on either side of the value -- The singular planets of the t_,oe

P p
p+2

have a mean motion greater tman the value ---_---; incidental]y, for these

singular planets, the eccentricity or inclination is necessarily rather large

o+q
(comparable to @_4 ). For singular planets of the types where q a 3, /_

P

the eccentricity and inclination are necessarily svAll (comparable to _2).

In this Part IiI, we are concerned exclusively _dth "regular" planets.

Despite the fact that our goal has been mainly to give a qualitative and ana-
lytical theory, we have developed a relatively large number of detailed formulas
so as to make our work useful from the viewpoint of numerica] applications.

The theory of secular inequalities of characteristic and singular planets
can be developed more or less like the corresponding theory of ordinary and
singular planets, discussed in Part II of this research.

Section 16.

We have thrown the equations of motion of a minor planet into the form (3)
of Section 2. This represents a canonical system with four degrees of freedom.
The investigated system returns to the general type of the equations (I) of
Section 1. In the actual case, we have

_'1= _z=0,

1,(x,, z,) = _ - Z=,

dh dh

We will apply the reduction method of Section I by assuming that ni and re are
about at a commensurable and s_J_p]eratio. Let us consider two positive whole
numbers p and q which are not too large and have no common factor. We will
assume that

., p+q
P

T

is a small quantity of the order of/_ or Sheller. Then, in the application of i
the method of Section l, the small divisors will be three, i.e.,

_n,--(p + q)n2, ,'_, ,_,. )

We must start from the equation of partial derivatives n
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where F(xk, y_; _k, ?_) is a characteristic function of the system (3) of Sec-
tion 2 while F(y,, Yk; _k , T_) is a new function which must be determined at the
same time as the function S(_, y_; _k, V_).

Let us assume that the two functions F and S are formed. Then we must

substitute in eqs.(3) of Section 2 the variables xk ; vk ; _k, _k by the new
variab]es _, ½; _k, T_ defined by the equations

Then, we find the relation

__(x_,,yk;&, '_,)= k (_k.y,,;_,,,_:,)

as well as the new canonical system

:' _ d:_,, d-# dy,, dF '
"d-f= d/t-S' -d-f= - g_,'

-, (/c=-L2)
_& _P a/_ ,z_ (3)

Let us demonstrate now how the functions F and S must be formed. For this

purpose, it is necessary to introduce in eq.(i), the series

= _'.+.,F,+ :,,_',+...,

_nd to equate, ia the expansions of the two members of eq.(l), the coefficientsl
iof o of _, etc. By putting first

, •
• !

_'0= ro=,2_ -- _,,

k-I k--I

!eq.(1)will be satisfied for _ = O. !

By equating the coefficients of _ in the two member_ of eq. (1), we find

3.OO
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the relation

k_t n d8,
kS_= F'-k" tL.)

As done frequently, we will.again put

_k= Qkcosc_k, ,_k= ,oksint,Jk.

Since the _-<pressionof Fx is given by eq.(5) of Section 2, we must set

z.J ,p,--t(p+q),#,,_

with the notation

py = py, --(p+ q)Y_.

In the sum (5), the indices b, Jl, j2, m, n_, m_ all take integral values which
satisfy the conditions

iJ,i<<_,. ' Ihi<<,4= _..

i,q +h + hl_<_,_. *(6)

From this it follows that

I'_I<__<__ + ml + m,.

After this selection of FI, eq. (i) will yield the function Si without small
divisors. We then find

zz
81

;lt:;t,$t,2a _trn m, m, "_
= . ....... .-- _ ei-e,-s,, (i,y, + i,y, + 71,o,+ ],co,).

In the sum Z' , the indices must not only satisfy the conditions (6) of Section 2
but alsothe inequality

i1(p+ q)+ i,__ 9.

Let us also equate the coefficients of _z in the two members of eq.(1).

9his will yield the equation

i

'* The notation a << b is to indicate that b - a is a nonnegative even integer.
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. dS,

by putting, for abbreviation,

F.=3 _,/dS__,t' dF, dS, d_", dS,

,_ida',ds, d_',,_,s,I (e)

In view of the form of the functions Yx, F1, and $1 as well as of the condi-
.tions (6) of Section 2, it is easy to demonstrate that F_ will have a f_rm ana-.
]ogous to that of _ [see eq.(5) in Section 2]._ Only, to obtain_the cond_*:_-o......
of the indices in Fi, it is necessary to writ_ m + 2 instead of m in the condi-
tions (6) of Section 2. If we do this, then F2 will be the sum of the terms of
F2 where

t

,, i_tp, i2=_t(_+_'), (t=O, :I:1, -t-2 .... ).

After this selection of F_, the function S_ is obtained readily and without
: small divisors, after integrating eq.(7).

We can continue in this manner and thus form successively the functions Fi,
F_, and Si. By setting

: _ -v_,,_ ....,-:¢_,,,-,o?cos(;,y,+ i,y, +At,,,+ h_,,,), (9)
1 -- _,ax" il, i_,#_,,h _, !

_e will have

• "_ i, _, _,. _.. e';';e__e_' " ""' F_ =-_ F,r,_,_+_)#,,n cos (_py + h(o, + j,(o:),
(lO)

s,=. _ _-- ¥_-_ _, ¢, ,,n(i,u,+ ",u,+_,,_,+ h,_,). (]l)

The conditions satisfied by the indices are

Ii, I<_5<,,,,, ihl<<m,= ,,,,,,, i

Ii, + ;, --_,-- i, I<<,_+si- s t

,for F-_ and S_ , and !

I_,1_<<__,, Ihl<<m,= _._.,
I,_+_,+_,1<<,_+_i-_ (_2)
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for Fi "

In the sum _ which g_'.esS_, all terms where 11(p + q) + i2p = 0 are ex-
cluded, i.e., the terms where ii = on, i2 = -5(p + q), with _ being any integer.

Evidently, the variable x2 does not enter the expansions (9), (i0), and
(n).

The coefficients

F _'_'''''''_,,_,,._,,.,, (i = 2, 3, 4.... ),

defined in this Section must not be confus4 with the analogous coefficients
introduced In Section 3. The two series of coefficients would be identical if,
in the expansions in this Section, we would have given only a value of 0 to the
index c.

Let us now study the canonical transformation (2) in more detail• This
transformation can be written in the form of

x,- & d(8-,%) d(S--&)
= dy, ' Yi --Y,'"' dxl "

__h=.:z(s-s.) . d(S--S.). (:3
dr,k ' r,, -- _;1,= -- d $a,

On the one hand, we have excluded the relation which yield_ xa - _, since we /9

no longer need the auxiliary variable x_ and, on the other hand, the relation
y_ - y_ = 0 which shows that i

_,=y,= t. (I_)

On solving eqs•(13) with respect to the variables xl, Yl, {k _ and on :
)utting

_ = i._cos iok, _,k= _k'sin ,_,, (/_= 1,:_), (15)
r

_e find that the differences xI - h, Yl - }i, {k - (k, ?_ - % can be expanded[
in the form

Here, we have cos for _ - _ and {_ - {_ while we have sin for y_ - y_and
':V_ - f_. In addition, we have

- lid<_<_,; (_= i,_).

Besides, m_ and j_ _re even in the expansions of xx - x:, y_ - ._x,_ - {i,
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T_ - "_xbut odd in the ,'eriesthat yield _ - _2 and T_ - _. Finally, we have

li, + i,--_',--i,l<< _ + 2i--2

in the expansions yielding x: - 94 and Yx - Yx, but

ii, + i,-j,-#,1 <____<_ + 2i--1

.?

in the expansions yielding _k - %k and T_ - _ .

Let us finally return to eq. (3)- Tr_echaracteristic function F can be
thrown into the form

- (17)F=;'. +:,F,+l,'_, +---,
where

1 " 2 z ,

a_ /zo

_ _ . /6",_=_ F_}T,_T&_,,_._,e'_,_-,",6"cos(,py + j,6,,+ j:&,,). (19)

Here, we hay_.put

..... ,_i/= _,f/,--',_,+ e)9,---i@,--O,+ e)t. (2oi

_, The relations (12) still remain valid.

Since F depends on Y, and Y2 only in the combination PY, we have the first
_ :integraZ

,. i. +,'+,i,=6.
:-

_: it is thus easy to reduce the system (3) to tbmee degrees of freedom. For this,
litis sufficient to replace the variables

•_, z,,

., oy the new variables

'" _1 _':c, + p +q:"

" _-/_,-_ + qg,, y,. (21),
P

lO&

I
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This transformation is canonical. The new system becomes

(22)
d_k d_" d,;,. dE (_:_ l, 2)

In the expansion (17) of the characteristic function F, we now have, because of

eqs.(18) and (21),

1 p.+q_ (23)¢.=_:+ p ,-c.

The solution of the problem does not depend on the parameter C which /ii
finally appears only as an additive constant to the auxiliary variable re.

Section i_.

The method of reduction given in the preceding Section is of broad gener-
a!ity. This method is applicable no Patter how small the quantity

7,+q (i)
nl---- P

might be. In addition, we have made no assumptions as to the magnitude of the
eccentricity and of the inclination. Therefore, the discussed method is appli-
cable not only to the case of minor planets but also to periodic comets whose

-- mean motion is more.or less at a commensurable and simple ratio to that of

Jupiter. However, it is necessary to assume also here that the two orbits do
not intersect.

To continue the reduction of the system (22) of Section 16, we will limit

the problem by assuming, in this Part III of our research, t}._tthe quantity (I)
is not too small but comparable in magnitude to _ and, on the other hand, that
the eccentricities and the inclir_tion are small, for example, of the order of
_2 or else of the order of _. Thus, the theory we will discuss here is that

of minor planets designated as "characteristic" planets.

We cap then put

d_'o 1 P + q- .'l,g,--d_: ...._ . (2)

,where the quantity A is comparable in magnitude to unit_.

To reduce the _nonical system (22) of Section 16 to two degree,_ of free-
dora, we will start from the equation
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We will attempt to satisfy this equation by introducing for the unknown func-
tions S and F_, expansions of the form

F" = F: + •+ !,':'F" + !,_',F. + .,';.F" +...,

8 = 8,+ p"=8,+ :,::,8,+ ..;,8,+ ,.°_8,+--. (&)

On expanding the two members of .eq-(3) in powers of _z and on equatSng the
coefficients of the same powers of _, it will become possible to successively
determine the various terms of the expansions (&).

Bv setting

i P+q_

2

- - . k-I

: 'eq.(3)is satisfied for _ = O.
v
:,. After this, eq.(3) can be written as

d(8--8,)I.
, (3,)

• __k,r,_ _ I
+

"- The term in _ vanishes automatically.

" On equating the coefficients of _ in the two members of eq.(3_), we obtain
the equation

jgs, _ idS,i, ,

dSz,. ;This is an equation of the second degree with respect to --. As solution, i
d_ ]

,_ ,we "will select .the root i

106
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It is necessary to select the function F* such that the mean value of the
second term, considered as a periodic function of y, shall vanish.

Moreover, in accordance with the formulas (12) of Section 16, we know
that the exponents m, .mz and m_ as well as the number _, which appear in any
term of the function Fz, satisfy the condition

l,qlS_<_ + ,., +m.. (7)

Thus, in Fz, the terms.periodic in y are at least of the degree q _ith respect

the.quantities e', Pz and os. We can conclude from this that the difference
Fz - F_ must be at least of the degree q with _espect to these same quantities.
Thus, it is permissible to expand the square _oot of the expression (6) and.to
write

,_8, 3 (F,-- F:)'= (_',- F:)+
(_)

9 - • s 135
+ _ (F,--F,) + _-_-_z_-_(_', -- F,'/' +---.

In the Pmown function Fz as well as in the unknown function Fx*,we wi.ll

• ,grou_together the terms which are of the same degree with respect to e', Pz,
and P2. No matter what the number q .mightbe, we then can write

_',= _',.o+ F,.,+ F,.*+", (9)
I

Fr =Fr.0 + F_.,+ F..'.,+---, (I0)

,- where Fz_ and F_ are of the degree k with respect to e', p,, and P2-

Let f be any function periodic with respect to 9. In Sections 17 and ]8,
we will denote by

[n

the mean value of f, i.e., the term independent of y in the trigonometric ex-

ipansionof f• For abbreviation, we will also write

[I) = t- [/]

After this, so as to cause the mean value of the second term of eq. (8)
•to _anish, it is necessary to determine one by one the various terms of the
!expansion (i0), on the basis of the follo_ing formulas:

F_,o-[;',.o],

Fr.,-IF:.,],

i07
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F:.,= IF,.,]+ ---322;_: [(#'''- F_,,)'],
3

F_,,= IF,,3]+ -_;i;[(_'''-F_,,)(k,,,--r;,,)]
9

+ _j, _,i[(r,.,- Ff.,)'],

r_,, : IF,.,] _ _.i,i_[( ''_- _")'
(n)

+ 2(_,,,--F_.:)(/_,.,--F_.,)]

27

+_3_:[(F,,,--F_,])'(F,.,--F_.,)]

135 • F_.1)'],
+ S-_i-_:_[(r,,,-

. : o o • .° • . . . . . ,.- • . . . * • o • •

Because of the relations (12) of Section 16 for i --i, we will have in F,

- li, I<<,,,,, li,l<<m,=.._,
(12)

I'q +i, +i,l<< _,

-_ I,gl<<_ + ,n,+ ,_.

--" ,Hence•

__" ' [/P*,,_+l]= 0, (t'= 0,I,2 ...).
-We even have

"" F,,2;e+,- O, if q is even

• . We will put /_5

F;=_,_,_V,,,_.-,,_e'_;.,.,_.,.,_o,(i,i_,+i._=). (i3i

In view of eq_.(ll) and (12) it is easy to demonstrate that the integers

' _ ; i , and m which appear in the expansion (13) of F_, still satisfy the re]z-
tions

.- li, l<_4m,, li, I<<,n,=,,-,,
I I_

p _,L

li, + i,i <_<_. _1.

It follows from this that m + m_ + mz is even and that i

I08

• . t
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F_x'+l - 0, (k' -_ 0, 1, 2.... ).

in view of all _his, eqs.(ii) are simplified and can be written as follows:

_'_:o= [F,.o],
F_'.]= 0,

'_ , ,,12

___=[F_._.]+ 2_ [_F_._,],

F,'_= 0,

s (J_5}I/F._z + .t*'l.l,_ l.ajJ .

27 ,2# _t " _ 135 ...._ l,'t"

. • . e. • .... • • = • . . • • .......

After thus having successively determined the terms of the expansion (]O),

it is possible to find the function $I by means of a quadrature, using eq.(8).
By arranging the terms in accordance _th their degree, we can put

8_ = _,.a+ 81.2+ 8],a +-".

In addition, the function Sx will have the form

8,= _,.,,,_ _"'_"_e 'm_''_,__, sin (tp_* _,_,. �j,io..).

Evidently, the relations (12) are _lid for this function $I. It follows from
this that

_,,2r+i-0, ___q is even .

Let us now compare the coe'.'ficientsof _s in the two members of eq.(3))•

This will yield the condition

, _d8, 3 d8, dS, (16)

•- ion putting, for abbreviation,

i_s,_,a;, as, _,i_, _s, dr:__s_,I
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Thus, taking eq. (6) into consideration, we obtain

On exp_nding the known f_mction _ as well as the unknown function F_'_,we
e_n group together the terms that have the sa_ledegree with respect to e', 01,
and P2. We thus put

_,= _o + _, T _, +-.-, (19)

F:= _7,o+ F_,+ F_,+..., (2O)

where _ and F_ a_e of the degree k. After this, the condition t_%t the mean
value of the second term of the equality (18) shall _anish is expressed by the
equations

[_0]- F_o--o, /17

[_,]--F;.,+ _,3 [(F,.l--F,;,)(_,.0
F_;o)]0,

S

[_,.,]--F_._.+ _-_ [(/_,.,--F_,)(_,-- _.'_,) (21)

+ (/,,2-",_(e_0--Ft0)]
- 27

Z,OIj O,

• • • , t * • • • ° • • • ° • • • . • . • • , .

-- The function _2 has the form
/

_ _.',_,",,",-,__.,-.,._o,.._. (22)

_0bvj.o'.ml?,we here have

I,g+ J,+_,1_<<_ +_-. (23)

_ The function F:, whose various terms are obtained by means of eqs.(2l), " !
has the form i

ii0
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The integers _ , _ , and m obviously satisfy the conditions

" I_<<m,, IJ,i<<m,=_,_... i

(25)
li, + j,l<<_ + _.

The relations (23) resp. (25) show that

[O.),2k+,]- 0

and that /18

F_ k,+1- O.

Thus, the formulas (21) are simplified and become

r_o= [_ 4,

F_,s =0,

3 • f " _

F_ - [e_,_.]+ _,-_, [{F;,,}{e:,;} + ,_';,,j {e,.o}3

27 r,'_, ', ,'q_ _1
+ _--j,_-_L, U, , .o,.

" F', -- o,
............... . . . . , . .

Thus knowing the function F_*it is possible to obtain the function S_ by
means of eq.(18) after a c3_drature. We can put

82 = S_,o + _,..s+ S,2,2+-.-,

where S_k is of the degree k with respect to e', 0_., and Pa. In addition, the
function S_ has the form

and it is obvious t_at the relations (23) are valid for all terms of S_. Hence

8_k,+s ----O, if q is even.

A comparison of the coefficients of _a in the two members of eq.(3') will
yield an equation of the form

iii
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Ad8j 8 d8_ dS,
- _d_+ _i--ai_ai_ + _- r: = o, (27)

by putting, for abbreviation,

- tCq+t'-6 tdS,l'dS_ 5 I_S:I'

e['. es, _,,la_",as, aft as,_

,e,_',:es,_, §. d!_, es,as,

+ d'F, dS, dS, d'F_ d8, d8, +._:.

Equation (27) has the same form as eq. (16). By treating this equation in the
• .samemanner, it is gossible to derive the functions F__ and $3 •

-'- We can continue in thia manner and thus successively determine the various

-- terms of the expansions (&).

",' We will have

_5

"' .withthe conditions

Ii155m,, lJ,l__<.m_= _, (29!
,, IJ, +hi <<_ +2/_'2

and

&= _.s,a,,_ _ e, e, cos(,_9+ _,,o,+ hlo_) (30

'_ .withthe conditions i

Ih l_<_<m,, I"Ll<_<_m,= _,_ ,
,- (_l!

I,_+ J,+ h I_<_<._i+ 2i-9.
L,

I

The function F? is always even with respect to e' P._ and 9a The func.tionS i

112
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is even with respect to e', Pl , and _2 orovided,that q is an even number.

* _ -* [_. For this purpose,Now, we will introduce new variables xl, y , S._,
we form the ftmction S(x1*,y; Sk , ._) as well as the corresoonding canonical
tr_nsfomnation, which latter can be written as

z_".= d (_ -- 8o) d (8 -- 8o)
xL-- dy ' Y--Y* _ dx: '

(32]
- _. d (_'--So) . d(8--8,) (k = 1, 2)._k-- d_k "_-- ":'= J_t---_k _ ---- _ 3

By virtue of this transformation, we obtain

F(_,, _; _, (_)= _*(_*;_, _,_).

This is directly obvious by writing x_, _k*instead of xl, _k in _'q.(3').

The new variables satisfy the equations

d_T, dF* dr,Z dF* (k _ l, 2)

dz:__O ' dy* dF*dt d-Y.... d_: (3_)

This will yield the first integral

x: = eonst.

We will then slightly modify the second equation of the system (3_).

-', In Section ]6, we first defined two arguments y and Yl, correlated by the
relation

,, y, =.y + P-+-q-t, (35)P

and then two other arg_Iments_ and Yi such that

_, _ _ + _+__q,. 06)
P

Finally, by _eans of the transformation (32), we introduced the argument y_.

Now, we will define a new argument y_ by putting
i

ll3

I
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y_ = y* + _+--qt. (37)
P

The second equation of the system (3h) will be substituted by the equation

a(F*--F')
dy___.?_+ q dF* x._a_ - • (38)
dt = p dx: dx_

Equations (33) form a canonical system with two degrees of freedom• After
its integration, the expression for the variable y_ is obtained by means ._f a
quadrature over eq.(38).

Equations (33) and (3_) or (38) are known as equations of secular varia-
tions of the characteristic minor planets.

Let us returo,again to eqs•(32). By solving these equations for the vari-
ables x4, y, _k, Tk and by putting

_k----_ cos c,,Z, r,_= _ sin w_, (k= 1, 2), (39)

'we find that the differences xx - x_, 9 - Y*-=91 - Yx, _k - _:, _ - _..*can be
.expandedin the form of

c'(_)_,_.'.,,,o*,._oos.r_.,._ (v+q)t]+j,,,,"+h_:). (_o). "_ - W* %'I Silt ! /_ troll ,

_ )

" Here, we have cos in the expressions fT'x_. - x_ ai_d "
Sk - %$, while we have sin

:: fin the expressions of y.,- yl_ and T% o_ We also have

Ii,,I<< m., (k= 1,2).

!In addition, n_ and j_ are even in the expansions of _ -_, Yx - Y_, %1 - _,
_1 - _ but odd in the series that yie2d _ - _ and _ - _#. Finally, we have

Itq+j,+i,l<_<_+2i--2, I_1<<_ +,., + m, + 2;--2

:inthe expansions yielding _-x - x* and Yx y_ , but

I,_ +_,+hi<<,,,+ _;--_, !,_1<_<__+m, + ,,,,+ 2¢--.1 _-_

finthe expansions yielding _ - _a and _ - _*.
t

A!_ this readily results from the second expansion (I_)which yields S,
from the formulas (30) and (3]) which determine the form of the functions S_ ,
and from the r_lations (36) and (37).

I
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Sects _n 38.

We will study the principal terms of the expansions of _ne functions F*

and S in more detai], by successively considering the cases where q 2 L, q = 3,
q = 2, or q= I.

a±ways have

F;=.Fo=2zl + p

The expressions of the other functions Fi(i = l, 2, 3, ...) generally
differ, depending on the value of the nu_?zcrq. However, these functions are
still defined by the formu2as (19) and the conditions (12) of Section 16.

Let us first assume that

q>4.

We then have, considering separately the grouos of terms which are of de-
grees O, 2, 2, ... with respect to e', Pl, and p_,

Fl,o _l,O,C,oz'O, 0,0,0,

FI,_ .1,o,2,o.. F_,O,o.2., 1,1,1,o,. F1,_,O,Oe,=_l'o,o,o, o0;+ o,o,o,o,O,+2Fo, o,l.oeQ, cos_t+ o,o,o,o ,

FI,3= O,

[Pl,d, F:,o,J,o., _,o,_,_, F1,o,o,4_,= _,o,o,oe_+_'o,o,o,o_,+ o,o,o,o_,

. =.l,o,._,_ " "cos (2&'_-- 2 &2)+2 FI'o,o,t,o_'s'° e't.=cosioL-'+ .__vo,t,,_,-2Qto,

a "r_l,l,l,2 t" "I 2F1,1,1,2 • •+ z to, _,l, o e ¢_Q, cos cb_+ o,o._,-: e'Q,q_,cos (,b, -- 2 &_)

2,_,o ,.., rl.-',.*,o • FI,2,o,_ _r,_,_• F_;o,o,oe'_, + 2_.o,v,_o e"¢_' cos 2_b_+ o,o,v,o e,

O ¢',1, ?, 0, 2 1,0 • _1, 4, 0, 0 tl+ -_'o,o,o,_ e'_¢_cos 2_4 + 2 Fo_:_i_,oe'Se, cos io, + _'o,o,o,oe ,
• . . • . . . • . • • . • • . • . . . • . o • • . •

_'_,o£_,o,o,oO, O, _, 0 ,

F_._ _ 0,

[P_.,] F_,'_" F_'°'_'°' F_°'°'_'= ,.o,_¢_ + 2 o.o,.,.oq_ cos 2,,., + o.o.o.oe|

_2,0,0, ._ • '_ I 1,0 Ct" _2,2,0,0 '|+2,'o,o,o,_q, cos2%+2FS'.o_.o Otoos_b_ +_:o,o,o, oe ,
• , + ....... , ....... # • ° . , . ,

Equation (8) of Section 37 shows th_* l_x - F* is of the order q with re-
sp_ct to e', _, and _. Hence,
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F_.o= _',.o,

Fr.,ffiF,.,, (f.,g>4) (i)
Ft.,_[PL,].

In accordance with the sax.eformula (8) of Section 17, the function Sx is

of the order q wlth respect to e', 01, and _z. Thus, eq.(17) of Section 17
shows that the function #s is of the oz_er c and that [42] is _f the order q +
+ 2. Therefore, eq.(!8) of Section 17 whose denominator differs from unity by

quantities of only the order q, demonstrates that

F;.o= o,

-. F', = o, ( I,,,, q>__) (2)
F{,=-O.

We can then pass to the function Sz. Aecordip4 %o.eq.(18) of Section 17,
: the cF/antityS_ is of the order q with respect to e', PI, and 62

---- In continuing, it is e_sy to demonstrate that the function _s - I_2 is of
- the order q and that [#s - F_] is of the order q + 2. The functions F_3and $3
-" are obtained by an equation derived from eq.(18) of Section 17 by writing there
- _83, _, Fs*instead of S_, _, F_. Hence,

F_,=[_,..], __o,g>4) (3)

:- F_,= [k_,]

_: Then, we find immediately that the f%n_ctionSo, as the function IF2], is ./2&
"_ of the o_dcr q - 2 with respect to e', Pl, and p_.

• Finally, it is easy to demonstrate that the function %., of which we did

inotgive the expressiou, is of the order q - 2 and that [_4] is of the order q.
_: iHence,

" F_,o= 0, :
( fo. g_>_4) (_),, F_,=0.

" Let us now assume that

f_3.

., .. _his case, we must start from the formulas

116
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_'_},0 _l, 0, 0, 0:: r 0.0.0,0,

_'_,1= 0,

• _" _"o,o.o.o_, -T z'o,o.o.o_, t -J_'o,o,l, oe _)_ Costs -I- J'o.o,o._ ,

,) 1,0,I,2 • .: ._ --+ .F__,p+_l,:e,e, cos(P_ (_,--2c;J:)

+ 2_-_,p+3._o _, co_ (py-- 2&,)

+ o _".1.0,_ "'_" (P9 -- 2/o_). _--p,p 2c_'s COS

+ ,, ,_:._:.o e" (pg--c;,.),_ 4" --p,p+3,1.0 _l COS

, _3._.o.o e'_cos:p_/,Jr" _;_ --p,p+_.O,O

_],,- expression of [F_,,] for _,4,

............ ° . . . ° ° . , : °

0,o,0,0,

• • • __ _ z._l,O,O J "OS--;"

F_,_= expression o_ [_'_] for _ = 4,
...... . • . . . , . . . . . . . • . -

-Thus,eqs.(15) of Section 17 will quite simply yield /25

Sr.o=F,,o,

(5)
.<

_;, = _,_.

" The function Sx is of the third order with respect to e' , ix, and Ds- The
same is true for the function _ in accordance with eq.(17) of Section 17.
Here, we even see that the mean value [@s] is of the fourth order. Th_q,
eqs.(26) of Section ]7 show that

¥% :o,
( _or_-- 3) (6)F_.,=.o.

:

According to eq.(18) of Section 17, S_ is of the third order wlth_respect '
to e' _l,an_

It then is easy to see that _s - Fs is of the third order and that the m_%n
value [_s - _s] is of the fourth order. Formulas completely analogous to the

I17
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formulas (26) of Section 17 will then show that

F;.o = Fzo,
( fo, q = 3)

The equation which yields $3 indicates that this function is of the first
| • • .... ,_. .order in e , 0,, and Pz. Finally, it w_ll be found wlthout any _ifflculty that

@4 is of the first order, from which it follows that

F:,,,=o. ( for g=a) (s)

We will now treat the cases in which

q_2.

The various _%rts of the function _ will then be

• _ rd, o.o,o
_].0 _ a" 0.0. 0.0,

/26
FI,2 IpI. 0.-Q,O 1 0 z,l.O.'-'.O -_,= _o_.,_oe, + - ,'-p.p+_o _',cos(P9 -- 2i0,)

+ ,o,o,o .%+ ,:_'-v v+-_,o_., cos (p/j--2o_,)

• .+ O_ '1.1,1,0 , O z'l'l'l'o ,. . ." - o,o,,,ve'_,,cosb,-_ .r-v.v+.,.,,o_ .o,eos(?t/--c_,)

F'._-.°,_ o v,._,o.o cos p_,+ O.0.o. C" + . x --p,p+_o.o e"-
z

. ,_,.3--0,

._ [P,,_]---- expression of [_',.4] for £ =4, p

F_ o.o.o o F 2,°-°,°"' a_2,o= o,_. + ---v,a,+_,_oe°s py,
• i

[_'oo.]= expression of [F_.._] to_ q = t,

• . . . . . . • o . . o • • • . ° . ° • • •

Equations (15) of Section 17 will now lead to the expressions

IF"" F_.o _ ,,o]-- _o.o,o.o,

=_a'o,o,o.o_ + _o,o.oe, +

•,,,_oe,, (9)+ zxo,o,"_|'_'_'°e'_COS_'J,_,o + xo, o,o,. ,
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_ flip _tl

_ ft.0,4,0 3 t z'l.0,2.O '.-_ "t
_o"t_" _r o.o.o.o+ ,_-z, _-p.p+-_.:.or/. #,

iFt.O.o., . 3 ,,,t.o.o.__ ,A -,+ .o,.o, i o.o, ,o-,-d.x;"* "* + .... iz'-p.p+:Lo,-')" 1 Qt

/_s,.,". z 3 ._.t,o,_,o z.t,o.o,2 I
+ 2 _o.,,._,-__+ d_---,r-p.v+_.:_..o_-p.p+zo._.le',_ cos (2_,,-- 2_,,)

O _ z.-l, l.& 0 3 z,,l.0, 2,0 FI, I.I.0 _e, At
+ .V,,o,,.o + _.._, ,_,,.,..,,_,o __., I _, _os_,,

Fi, l, 1.2 ._ ;. ;.t+ o o. L o ,_ t'_ t't c05 _l

2/_.,,j, j,_ 3 z.],o.o.2 F,,J,]oo _.

I,_ _._o 3 ,,,.,._% ,,I .,._, _.z.'.',o.,,,,
"A_-_'4 IL'--P,P+2,1,O/ t: "_'t

+ _e'_;o;o.o+ ..ff z, / + _o.o.o.oe #,
/27

_-:_ x'--p.p4._O r--p,p+_O,O
+ 2 _'o.o.',.,e + d_z, I

+o/_,t, zo.* " 3 z4,o,o.* _,_,_,o.o I
"V o.o.o,t + _._ ,'-p.,._o.', *-,.v+zo.o/e"_: cos2_,,

"- /_L.% 1,0 3 FI,i.I,0 _-,!, ..2.0,0 I '$" "-- e _t cos o_z
• . + 2_ o,o._.o+ ,a_i:_ -v,,+t_.o,'-...,+t.o,o!

/ _,_._.o.o 3 _._o,o _t_
+ F'o.,_.o.o+ ._,z-=,_-p.,+,..o.o,! *".

According to eq.(8) of Section _!7,we immediately obtain the principal
part of St (i.e., the terms of second order) in the form o£

- ml,0,_0 "s
pdSs,._ =. 2 ___,,v+_o_, sin (p_/- 21%)

9 L_I,O,O,t "s "_
+ -."-v,v*z_,#,st. (pV--26,_)

o "._1,1.1,0 t •

• +. ,-p., ��¼#@�P�•e,_in(p#- _,,) (I0)
• ,, _,t,..,_o "" sin p.V..+ _. a"--p, p4._.,O,O_

Equation (17) o£ Section 17 indicates that

_%_,c"= O,

, - 1
[m_,,]- E t _- d_.;,J- - _,"_,_LX"d_--! 1"k-! - - °
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Thus, eqs.(26) of Section 17 will yield

F;,o:- O.

| fQiL',l,O,_O ,.,, _ -- ,..,, ],:,l, O,O,.. "t'_

F_,,=[_:,]:- _,o_.-.,.__,,0,e,to__.,._0,,,e, (n)
o _,1.0,2,0 _1,1,1,0 -- . ^. ,_1,1. l,O -0 f|%+ oL'-p.p+.%.%._r-p,_,+_l.o£_,cos/h _-z_r-p..,+-..t,o)-¢ j'.

We can now pass to the fun:tion S_. Since _ao = O, eq.(18) of Secticu 17

shows that the func£ion $2 is of the second order with respect to et , Pl s /28
and Ps. Equations (17) and (18) of Section 17 readily yield

• dF_,O,_Oo _I.o.:.o I- o.o.o.o 4F1.,._o_
p'J,s,._:. _._,.,,.,.oV _, 0.o.o.oIe;_i_(@-2,_,)

j ¢,1,0,0,0
]p],O,O,2 I u,z'O,O 0 0 ,d¢,I.0.0.2_

+ 2-'-p.,o+-,.o.:zlp _ ' ,,.o.o._.o/e:sin(p_)--2&,:)_, _/,,ZI

+ terms that cancel with e'

+ terms with 2 _ in the argument.

According to the definition of the function #s, it is easy to see that

2 ¢ "

"_[_:-,} ___,l.
[ak_]= [#,..-]+ ,, L _e. d#,,Jk--I _g

Finally, formulas analogous to the formulas (26) of Section 17 will _eld

F_,0= [¢_,o]= [#,.o]: ,.,.o.,_o"_O,0,o,0,

3
F_, : [¢,.,3+ _ [{#,,,} {_,o}]

d z,

0._0f_+2 _o_, cos2_,

+ o,o,(,,o_',+ o,o,o.9V,COS2to,

_,o.o,o
• S ,_,.o.zo ,,{_d_?.o,o,o,_,,._o_ :,
_'-4;'''-,''*z%°'_ V"-_-_z_ -- "-"o.o,o.o]_t, (12)

• J Z-_,|,G,O,°
8 IF_,o,o,_. _ I-u_'_o,o,o,o ._,o,_ :,

_'_"-"'+_'°'" I_'--_T- - --o._0.o1_,
6 _1,o,_,o _c,,%o,o,o :,

+ _,_ - -,,._+__o_"-..,p+,,o,o_,cos2_,,
6 m_,o,o,_ _m%o,o,o

+ #,x_--,,, _+__, - -,,,+_ o,o_:co, 2,;,,
+ terms that cancel with e'
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last, we will consider the _ost difficult case in which /29

q=l.

Here, we restrict ourselves to merely derivLng the formulas required for
calculating the inequalities of the second order of _agnitude, while considering
/_, the eccentricities, and the inclinatiol,as being of the first order of rag-
nitude. We will start from the expressions

-_I,I !,0,1,0 • 0 _'d,l,O,O er= 2 F-_,_,.l, oe, cos (;,_--&,) + .x-p.p+1.o,o cos Pi/,

FI,_ _ F 1'°':_'° l,o._o ., .o,o,o,o_' + 2 F'-"2p_p._.o e, ces(2py--26,_)

F:,o,o, 2-_, 2 FI,o,o,z _,+ o.o.o.oV, + -2:,._1,+_o.'.t', cos (2p# -- 2&,)

o _,],1,1,0 ' • • 1,1, l,O t " 0 " "+ ,__'o_o.l.oe _, cos c._,+ 2 F__p._+%l.O e e, cos(.py--%)

. z-_'.2.0.n ^._ ¢, .-.I._0.0 r2T _o,o,o,o_ 4-,:/"=2p, z_,+_.o,oe cos 2_o_/,

/_1.3 1.0.3,0 • • - •= 2 F'-_,p+,,l,O e, cos (py-- m,)

F''°'''' ""cos(rg--6,_)+ 2 -p,p+,,l,o #,e,

F|,O,l,2+ 2 -p.p..-1.-,.,#,_"cos(Pi;+ 6,_--2_,,)

_, ¢,1,1,2.0
+ ,_*'-,_p+l.O.Oe'e_cospy

o Z_I,1,Y.0
+ - _-,o._,+,._.o"e: cos (/'9-- 2_,,)

o_,J,e,_ "" COSp_/-}""_*'--_,.p+l.0.0 e _:

o pl.l.0.2
+ "_-"-_..,,+,._,_'e; cos(_y--2,;,,)

O ]pl,_.l,0
+ ".-'--_,w+,.,.o e"e_ cos (PI)- 6,,)

+2Fi_°1,_,,o,',_,,cos(py+&,,)
]pI.3.0.0 .#_+ 2..__,_+1,_o = cos_y

+ terms that contain 3 p_ in the argument

According to eqs.(15) of Section 17, we _Ii thus have

z,l,O,O,O /30
F{,o_ _o,_o,o,

F_._--/_,,,o,_,o3 ,,_,,o,,,o ,,_:.,F,,O,O,_-,_o,o,e,o_-j,_'-_._+,.,.o,i_, + _o._oe,

IF,.,,,,o ,,o,,,o,,,,_o),. • (i_)ho F_p,j,+_,z,oF--p,p+z,o,o e _zoOS(o_+_ o,o, +_,x_
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{vl.2.o.o 3 IFl.l.o.o _._

�orle".

Equation (8) of Section 17 indicates that Sz is of the first order with

respect to e' , _i, and 6s. Obviously, we then have

pJSl._ = --'-_.p+,._,o°_J.o., o _, sin (py- c9,) �2F-p.p+l,o.o]']'°'°e' sin"py,

., I..1,o,..,o , 3 ,Fl,oa.o _'_ "' sin(2 pl;'-- 2[_,_)p-J_L2 = _'-2p.__p+2.2,,__ 2..4-'._',t -p'p+:' ,,,_F]_',

_].o.o,.* "' sin (2p_/-- 21b,)." ,t' -- 2p. 2 p+i. 0, 2 (JI

1_1,,.i.o . 3 FLO,l,o FL,,o,o
+ IJ'-'-'?l'+_'''° _"_ix] -p,p h��€�¬�-r..+,,o,o]e'¢, sin {2pj/--_,)

Ivl._.,o,o 3 t.l,o,o .) ,z •+ ,_'_--_p._p+:,o,o + 2J'_::-_(F-p,_,i,0,d- e sin 2p_.

Before continuing, we will del'ive, from eq.(/7) of Section 17, more de-
tailed formulas: namely,

These formulas, taker together with the formulas (26) of Section 17, have /31
giver the following expressions:

@

p__ { ,i_,.o.l,o ,.
F_,l _ -- 2 _-'-',,,,._p+i,l,o#

t ..i, l_i,O, I,O

T+"'O' 1'0 _liu'i'--P, pil, l,O ]pl,O,2,0 I

+ ,-_,.,,+,, I,o 1"---'d-_7/ .... 4 ,<._,,,p+l.l. o/

_;_ , J_] 000
• _F_',o _,__"-_'_o:o _F_,o,,,o (i_)
+ ".j _, l,,l,+i,i,o_ li,, dz, "- o,o,o,o

: 122
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ilvLo,2,o l 45 rz, l."._,o ,_].,

4 r,w_,oo,z ,_ FLO,],o FLo,,.2 _ ",,_p._ t_J"-:_P,"_+?,o,2] + -I,,._+i,1,0 -,.,y+l,l, ol¢.-

2 / d _.1,o,l,o _L_.c.o
+ iPd , o.o)

g:,l._ I,a 'L"_] 1,2,0
-- 4 _._%p+), 1,0 -r'--p,p+], _',0

__ _ _'d,O.].O l_l,],2.0 __ 0 /;-..,5.2,0 L-d,l,l,O
L--P,P+I,I.('r--p,P+I,O,O -r--2p, 2p+2,2_Ot'_2pj2p+2,1, O

.I _'d, 0, 0, 0

3 pl.O, 1,0 _1,1.¢,,0 _.t. 0, 0, 0, 0

+ ._/i:k-_ _-_.p+],1,o 2p_:=_;,p+l,o.o dx_

- ",FJ°;_._ , oFl, l.l.o o _,Lo,_,o_,LI,o.o

-. _;.ol,0 r,LJ.l,0 .___ ]pl,0,2,0 rl, L0,0

---_--2_,P+],IDOa'--2p, 2p4-2, I,,: vL'--2p.2p+2,2,0_P_p,p+l,OtO]

45 /_l,o,l,o .3rz,l,o,o ]

_x_ _-'-_,_+_,_,o_r-_,_._,o,o]e'_ cos&_

+ tel_ in e'_.

To derive, f±nally, the expressions of S_,oand of Sgx _ we will start from
_'-,rLheformulas

@ = {a)_,o),

_h±ch result from eq. (_8) of Sect±on ]7. :In th_s manner_ we f±nd

I , _I,O.LO _| sin

" _ _ _-d, O, O, 0 -

vl, O,l,O I 0 _ U'A" 0,0, O, 0 Fl,O,_ o

s,.,f ooo,,,

,_,o,_,o 9 ,z,_ o_,o _| __
_:P'P+" "" f _' sin (p.V /03" ' "/J "¢t

l _1,0,1,0 [ =d 0,_,0
--.p_. p+.,., 0

3 ,F_,O,LO }+ 3-- ] t __,_+_,_,o)_ ¢,sin(3py -- 6,)

+ terms multiplied by e' •
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This w_l! finally field, for the various values of q, the principal coefff-

cients of the expansion of the function F.*,expressed by means of the coeffi-
cients of the expansiou of the f_nction F:

q>4:

UI,_ 0,o,/,,_ , as l¢,,g as m + ml + m,<4;

_.L'O,O,j_, h , a_ long as m + _n I + 7n2<4;

tjt.j=p''m'm''rn*--O-- , as long as m+ m= + mz<2 .

q==3:

_,m, ml,m=_l,,.n ._l'm'mt'rmO,O,j,,_ , _'s long as m +mr + ms<4;

_,,m/,m,,rat= 0 , as long as _+m,+m=<_2;Jt, J

-;" - _3, m, mr, m= _2, m, ml, mi
'.tl,Jt . = 0,0,jt,_ , as long as m + m t + m_<_2;

" t4,0,0,0 .-== 0.
:n,o

- q_2:

,, _,_,ml, mt _ + m t + m=< 2;
- jI_,_, mr, rat -- -e0,0,j,.h , aslong as _
. . D,3=

j_, 0, 4,0 = .L--d,0, 4, 0 , _ / 1_1,0 _0 x|
.z'0,0,0, 0 "1- d-S'_

"_' 0,0

it, o,_z F L°,_,=

__ :0,0 _ 0,0,0,0_

• _ _ O, ,,2,--2 + _--P,P+2,2,0='--P,P+I, 0,2_

'" ILo,o,_ F L°'°,' 3 (_1,o_o,_ _s
, ,_o = o,o,o,o+ _-ii:-_ ,e_,_+z, om,

t1,1,3,0 -- z-d,I 3 0 __ 3 ,j_! 0 2 0 1_1,1,1,0

•_,o -- .co,o:1;0"1".4_---_.A.2_,',_;+_,s,o.e-_,_+t, Lo,

_l,l,l.'- =,= _1,1,1,|
•, tl, 0 -" 0,0, 1,0,

]i, 1,1,_ 'l_l, !, l,_ 3 l:,d,O, Q,2 _l_l, ? |,0_,_= "-=-"o,o,a,-" + ji_-"-_,,r+9.o,_ -p,p+_.o,

' ; tl,=,s,o Fl,-',_.o 3 11_1,1,1,0 xii
•,o,o ='= o,o,o,°+_ix_"'; "_'-°+s't,°_'

I
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L 2,2,0 3 .tvl,o,2. o _1,2,0,0i_,_._,o==Fo,_.,_,o+ -
:2,0 _2X_ --p, p +2, 2, 0 F--p,p+2,0,0 D

_l, 2,0, '_'
_:_,0,2 = 0,0, 0,0,

_I, _,0, t _I, 2,0, 2 3 _I,o,o, 2 _I,2,o,o
0,2 = "v0,0, J, 2 "[- _:_ _--P'P +2,0,21,-p'p4"2'O'O' _.

/]:}1o _,,_,_,o__3 _u,l,o _,2,o,o'= ,"o,o,1,o,3.._ _-p,_+_,_,_,,,_p,p+=,o,o,

/1,4,0,o F _ 4.0,0 3 _I,2,o.o _t.
o,o = o,_,o,o+ _z_ _--:,p+2,o,oj,

• . , . * * * * , • , • o , ......

/_,o.o,o--0;

/_,_,_,o8 ,_1._2,o ,,, _ -- 2_ _-'-_,p+_ 2,o/ ,

ro:O,O,2=_s ,_z,o,o,_,,p-_t_-p,p+2,o,_l,

]2, l, 1,0 4 zd, 0, 2,0 _'d, 1,1, 01"_p, p ¤�d�P�0-1,o = -- p_ _-_,,_+2,-°,o

_o2.o,0== 2 , _-,,,1,,,0 ,,-- _-_...__,t,--p, pt2,],O) ;

• * . • . • . . , • , . * o • . • • • o
e

o,3,0,o,0_F=,o,o,oo _ o,o,o,o;

- ,_l,O,O,O
F.,,o,2,o 8 ..c,1,o,2,o .,2/ a_'o,o,0,0 ,,;L_X,0,_0_

:o:°,-_,°=o.o.o.o--p-_--,.,+_,.o,_p _, :t "e0,0;,0,0/ .

p,0,2,0_ F2,o,2, 0 3 FLo,_o Fe,O,O.O
2,0 -= o,o,=,o+ _,_ -p,_,,_,=,o-m+_,o,o,

p,o,o,=_,o,o,_ ____._,oo= ,,/ d_'°: _°, ,0,0 A _'d,O,O,=_

o,o = °'°'°'°--P =z/_'-j''_;+_'°'=_ _P d_, _-'o,o,o,ol,

/_,o,o,.',===F*,O,O,_ 3 FLO,O,_ F_,O,O,o
0,2 0,0,0,2 + ,_f_;_-'_ --Jo,p+2,0,2 --p,p+2,0,O,

• • * * . . • . * . * *
• " , * • . • • • • ®

_=I:

f,o,o,oF_,o,o,oo_o ----- o,o,o,o;

,:o'' = _o,o,o,o"r _i_ _ -p,_+m,o_,

/01,o,0,_i _l,n,o, =
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fl,1,1,o F1,1,', ° 3 Fi,O,i,o Fl, l,o.o
1,o _ o,o,l,u -t-,../,,x_ -p,v+l,l,o -p,p+1,o.o,

11,_,o,o_ v_,_,o,o 3 tFl,l,o,o ,2.
o,o -- .o,o,o,o+ 9:_ -p,._,,o,o, ,

....... . . . . . . . . ° • . • ° .

1._,o,o,o_ 2 _F1,O,l,o _,.
o,o -- p,_ _ -p,p+l,J,oj ,

2 {_2t -2v,2v+_,9,oJ
.... :Fl, o,2,° _t

lo;°'_'°=p,_

Fx,o,l,o I dF l'°'l'° F1,o,s,o i.-p,, p-P'P+"1"°--4 -p,p+,,1,o]

3 t .j_l,0, O,O
tFl,O,i,o J wx'o,o,o,o 2FLo,_ o

+9 I_-1,,_,+1,1,o)'_p _-_--- o,o,o,o

F,,O,,,o t 45 ,.1,o:,o _,|
I

A

• O,0 , _' - p, p.F1, l, 0 _t, --p,p..t-l, !, 0_' 1,
--_kkz, 2p,2p+2,0,2 ) --L _.d O,l.O v!.0,1,2

:,,,,,o_ (_:,o:,:,,oV,,,,o,o,
,,o -P_I d_, -' " -_,._+,.o.o,

F4o, l,o FI,1,2,o--4 --p,p+l, 1,0 --p,p ,O

F_,o,,,o F_.,.2,o F_,O,",o FM:,o
---2 --p,p+l,l,O -_,p o--2--2.p, 2p+_,2,0 --2p, 2p+2,1,0

, , dF _'°'°'°
+ .3 F],O,LO Io_ m ,1,0,0 o,0,o,0_-z_ -_,._+,,,,o_._v.,'-.,.+,,o,o -dE,

_ 2 F_,O.t.o F_,_,_,o F_,O,_,o ,,_,t.o,o
.-p,p+? 1,0 0,0,1,0 _ 0,0,0,0_t'--p,.p+l,0,0

_3 F_,O,_,o F_,],],o ._,o,2,_ ._:,o,o /
--p, p+i, 1, 0 --2p, 2p4-2,1,O--_--2p,2p-F2,2,0_--p,p+l,O,O_

45 _F_.o,_,o _ F]:.o,o }- 9_-_]_ -p_+_,,,o_-p,,_+_,o,o,
• • • • • • . ...... • • . • * • • *

Section ]3. /36

In Sections 19 - 22 we will assume, as in the theory of ordinal- planets,
that the eccentricity e' and the unknowns _ and _ are comparable in magnitude
to _,

It is then convenient to group pairwise the terms of the expansion of F_

by putting

126
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F* = _': + ,,(f[ + v'i_F:) + t,'(Fl._.- Vt, F:) + ...
O)

.- F: + ,, _: + _,,_: +...,

--F$ _-,b,,,, e ¢, e, cos(7,_o_+_,_p, (2)_q'- .;__+ VT_F_'_= _ :.'."._....... _.m,-,,, ....

_i,_n. ml, m2 ]21--l,m,m:,m.., __ -- " -,_,,_, -----_,,_, V,,1_,',;...._. (3)

The expansions (I) and (2) are analogous to the expansions of F* and F_ in
the theory of ordirk-.ryplanets (see Section 3). However, *_cre are some differ-
ences :

n

In the case of ordinary planets, the indices i, m, rex,n_, Jx, J_,of the

_'l"x'_satisfy the conditions (ll) of Section 3. In the case ofcoefficients Fo,o,jx,_u

characteristic planets, the indices of the coefficients (3) definitely satisfy
the conditions

I],1%<,n,, Ih I-<_<<m, = _.,

Ifi + hi << _ + 4 i--2,

because of eqs.(29) of Section 17. It seems quite probable that, in comolete
generality,

Ih +J,i<___<i,_+ 9,i-2

applies also to the coefficients (3). By extensive cal'cu!ations,which it as
useless to reproduce here, I act:,_!].yfound that this relation is e_ct, _.t
least as long as

2 i + _ + m, + m, < < 8, ifo >_2, (_.)

and at least as long as

2i + .i + m, + m,<<_6, if_ L (5)

In the case of ordinary planets, the quantzty Z_

Ft, O,_,o Fl,O.C,_
0, 0, 0, 0 -I- O, r_o,o

is identically zero. For characterictic planets, the corresponding quantity
i

_1,0,2,0 e,t.l, O,O, _
O,O + 00,0

]27
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r

T. u _

:cancelsout only if qk 3; this quantity is of the order of j_ if q = 2 and is •
.comparable to unity :if q = i.

To obtain the function F* which appear:_in eqs.t33) and (38) of Section 17,

_:,_, ,4,E_,_

L-_tead of

_ the expressions for the various terms of F* given until now. Consequently, .

it is necessary to calc,_!atethe various coefficients Fo,%:x._e ' I_172 "g Jz?2

with the coristantvalue x_ a_swell as the _m.ut_ty A, using the foz_ula :

- .<, ::. I -_'-+____==_.j. (6i :
._" _ - : a:_" ? •

_--- Before integrating eqs.(33) and (38) of Section 17, we will subject them
- to s_veral transformations.

_" - Let us first consider the highly interesting particular solution in which - -
:. " " g(" and 2__ have constant .values. Let

-- _ _:_ _, ,,:= o. _;=o, _.:= o (7)

-__ be this particular solution.

:. The quantity _ satisfies the equation /38

_- = o, Ca3
t

in whose first term, the values (7) of the variables must be introduced. In

_.),-_,"1,"•
the coefficients 0,I_,Is of the exparsion (2), which are linear with _-espect

to/_, we can consider j_ as a parameter independent of _. Thus, the first
_member of eq.(8) is expanded in powers of _. In addition, the_coefficients of
the various powers of _ are odd in _ and e'. Thus, the-ratio _ :e' can be ex-
panded in _owers of e'_ and _.

By finally putting
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we can set

(_:cY:: (_o:_.)_= r__+ p?,, + _2:,'+--, _- -1,2,3...). (lo)

The_ coefficient ._ J) in this e.x_nsion is a _]ynomial of the _e_T.ee. s
_th resp¢<:tto _. -.

We ob_iously have

_:,=; _,.,.,0 -,.0.,.0_._= (_(.'b.' (11)

In the theory of mo%ion of characteristic minor planets, the particular

solution (7) of eqs.(33) of Section 17 _corresponds_o a certain solution wh':cn
depends _nlv on two arbitrarT constants and on two a'r_dmentslinear with respect
.to tLme.

Now, we will introduce new ___iables by pct.t_

- :.. (12)

• - In addition, we set: -,Z_

-.. -t,--:,t, (13)
1

. _ (F*--C)= H, (V.)

" where C is a constant selected in such a _r_ner that H cancels out with the

variables _', Ti', _", Ti".

The new canonical system, equivalent to eqs.(33) of Section 17, is written
as

dt-_= -a,_-_ ' d_, Q._'

d_" dH d_" dH
d--t-_= dr,_' d--t,= d_"" (l'_)

Finally, we wCll put

e,_ _r = @'sin(or,- co__o', 'i' (]6)
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mr
_j _(_ snat ._,;=e,,C08 (o , :' il ! "

I_ view of the e}p_nslon of the function F*,.it is obvious that the funu-

tion H ca.ube e:q_J_ed in powers of _. Thus, let
h

H = H '°) + .-H_')+ _,'Hm + .... (17)

The funct-on h"(z) ".n_s the form

This is an even oolyT_mial,of the degree _m + 2 _th respect to _'.., ,_', C", 11"
eo. The coefficient _,,_j.*"is a polynomiaZ _m eo.

As in Section 3, this leads to the g__ner_lformul_

: ,._.o,_.., (19)

- where, for abbreviation, we b_ve put /&O

,n, -= _,. +/t,, ,n' = .' -,-#', m" = a" + _",

j, -_a,-- #,, f = .'-- #', f' ,_" #',

The whole numbers i, m, _-, Pz, s in the sum (3.9)must assur..evalues that satis-
fy the conditions

i_>l, _i>O, ,& > a', _,_> f, s>O,

la,--_, + a"-- '_"l < ih + 2i---2 =
(2o_

= 2 m + 2 -- ((_, + _, + a" + _") -- 2 s.

In the sum (18), the whole numbers m' , P", J', z""are subject to the con-
ditions

2<m' + m"< 2m + 2,

I j I <__<__,,,, ' i f, l___<_,n,, = o,_,. (2_)

Here, we also have

!f 4 _"1+ m'+ ,,,"_<_<...,,,,+ 2, (22)
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at least as long as

m_--O, 1, 2, ifq> 2,

and at least for

m = 0, 1, ifq ----1.

This results from the re!atio_ (20), considered together _.__ththe conditions (&)
and (5).

Let us finally add that

_':'"_"_,..__.:= H_"-" (23)
because of the relation

i.m mr. ,m.
_/_,_,_._ _ i, .,. .,,, ,_

Below, we give the expressions for all _oefficients of _o) and of ._i) ,

derived from the general equation (i9) and valid for all values of q:

_o._,o _],o._,o I jo.o,', _l,o.o,',
0,0 _ O0.0 , A_0,0 _ O0,0

HL4,o :-.LO.4,O uI, o.4 --.1,o,0,40,0 _ 00,0 , z'*O,O _ O0, O ,

H''_'""_'_' ""_" _SP

, 17_!, 1,3,0HI_°--_o,o,,o + _;_':P'°¢:)),

"":-=eo [6,,-: + zo<-_ p_'),

HI,;,2 .-:,l ! • _l,o,2,2l,o = e, _c_l,o' ' + oo, o _"),

HI, 2,o _..%c _o s e.] 0._0 (2)-_o = 6_o + e. (_[o'_°,-, ,_.,_'_H'x°_"):,+ ,_o ' p. J,

oo,o + e, (ffo._'"4- .ff,.o',-,.t.L_o P_,'+ _6o oq .... _o.,.o p;,),,,,

._1,0,2 "z_.,O,O,2 s ,,xl,2,0,2 _i. 1,1,2 '1" --t,0.2,2 .
o,_ = _o.2 + eo too,: + 6-_,e p:,' + ¢_-_.: p(,_)),

H,,o,_ -.:,,,_o..__,_:o_O._.0,0 _ '_0,0 "T"_o

We will then set

m°) .... e"- "'_e"' (2_)
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with the notations

.-,o_o _,(/,.o.,.oV,;_,.o)/o:= --Zt_O '_ =-- +" 0.0 . ,

(26)
,t e ^ _1.0,0,2=--",._'o,o=_oi/,,o._'-'+Vi;/___,.o,')-,Io,0 , , •

The expressions of the coefficients f_z)2 , for various values of q, are. given

at the end of Section 18.

Moreover, it is well kno_u% that /_2

Fo,,_-',o _z.o.o.,,,o,o.o + - o.o,o.o _ 0

(see Seztion 3 of Part I).

From t_is it follows that

_'.+ d',= O, if_/> 3; (27)

"e V, ]6 rIF].O.._.o o _, ,,,1.o.o.2 .:.
" +r"o= , pj'L_ -p,p+_..,oJ + tr-p,p+_.) J, ifq--=2; (28i

and that

v_ + v_' is comparable to unity _" q = i. (29)

The expression (25) of the function H(°) indicates that the canonical sys-

tem (_5) of the secular variations of c_%racteristic minor planets enters in

the o=eneral type considered in Section 1 at the beginning of this report.

It then remains to transform once more the equations of secular variations.

In eqs (35), we will substitute _' _' _" _" by the variables e' _'• • D • • -" ,_

_", _" by setting

,p'= _'+ 1/_----11r,'= _' eV--i w

_,'=_'-V -i,;'- (e-_-u.,, (._o)

f,. _tf=_. "l"V--lT/'--=e"e_'-i_",

q," = _"-- 1/:-i ,;"= (' e- _':_ "".

The new _mknowns satisfy the equations
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d_' dH d_p' V l dH ,

d+ ff -- dH d+ If --: i/ ._+H.-dt;-- - _i/---id;s,'-'' di,-- @

The function H(') which enters as coefficient of _" in the expansion (i7)
is expressed by /&3

H(-'= _7..:,_'.'",t'o' +'_,/,o ,,y,_,.. (32)

For abbreviation, we have used there

m' = a' + #', • +n": W' + f,

f =a'--fl', f'_d'--fl". (33)

In the sum (32), the nonnegative integers _' , 3' , _", _" satisfy the conditions

2<<,'+ #'+a"+#"_<_2m + 2, +,3/.)

_"+ #"= °", (35)

I','--#' + a"-- #"l + a'+ #'+ _" + #"<< _m + 2, (36)

where the ]ast condition is valid at least for m = O, !, 2 if q _ 2 and for at
least m = O, 1 if q = 1. These conditions are equivalent to the conditions (21)
and (22).

We have, specifically,

H(o)= ..o,'z-,o ,.., rzO,O,_ ,,_t//u,o _ _o +,zo, o

,,,o ,,;; ,, , (3,7)
= -- -2'p''p'-- -2-q,q/"

As in Section i, we wi]l introduce the arguments

u,'= _,'t_ + f, w"= ,,"t,+ 7", (38)

where ¥' and y" are two arbitrary constants while ,+'and v" are two still un-

known quantities. We also put
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where o_ and 0_ are t_ arbitrary constants.

It is convenient to consider T' , _' c" 4", , as a function of the _nde--
' $'_'instead of tl This will then yieldpendent variables _, _o, q_',

1 .d__=v,D,+v,,D.
V--I dt_

with the _ymbolic notations

D' , d d d .. d...... _'°,_-,_• (_o)_P*bl'T'-,-- q2° d _or,' D" -- t/'_ d,/',

In view of this, eqs.(31) can be written as follows

d(H- HtO_),
--{v'D'+,,"D")(¢'o¢')--(v'--,,'o)_'o,/= -"_t/°- _r .

• - -w(v'D'+ ,,"D")(_'_q/)- (r'--v'o)T"q/_ 2,f'.d (H _ H (°))

,,d(H-- H(°)),
-- (v"D"+ v'D') (qY'o_P")--(v"-- v"o)_p",,/'= 2_, d_, i ---

t#'D" + ,"D')(_"._0")--(v"--/'e)T"*_0"= 2T"od(H-- HtO)).
d,p"

We will introduce the variables _", '_",_", @" also in eq.(38) of Sec-
tion 17. For this purpose, we set

with the notations (33).

Now, because of formula ($2), eq.(38) of Section 17 _n be written as

_3_
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dY;__=x__a__ d'_J'°'°'°•,,oo --F'O.
dt dx: (_..)

Let us make some statements on the functions G(") , defired ty bhe formu- /_5
za (L2).

Evidently, O(a) is an even polynomial of the d-.gree2m + 2 with .-spect
to co, _' , _', _", _".

The coefficient _{';y.=", which is a polyno._dalin eo , is given by the
general expression

(iI..........m.m'.,.,, ., #, d!_):._:,.... em+'"'-m"o>,,,,= ,,' (,,,' d,: . ....',,,_,°,,_,,, (_5)

analogous to eq.(19). The indices i, m, _i, 8z, and s _ake all v_.luesthat
satisfy the conditions (20).

In addition, the nonmegaiive integers c" , p', _", _" also satisfy the
conditions (35) and (36) which latter holds at least for m = O, l, 2 if q _ 2
and for m = O, I if q = I.

It is obvious that the functions H and G do not change on permuting _'
and 4' as well as _" and 4".

Evidently, the expression of the function O(°) has the form

GmI=G °'°'° Golo,, g,,) o,_o , , q,,,Goo' _ _" _o,o,_ _.o_ + 11o' tT + + , +_-o,o 'r •

In accordance with formula (/+5),on putting the_-em = O, the formulas given be-
low are rcadi]' ,btained (valid for all values of the integer q):

_ _-2,0,0,0 t_., "_.1,2,0,0 d a:l,l 10 d_1,o_.o
,oo.o,o _ _'o,o _ 1_ @_'o,o OLo' ' (p .{. 0o, o',
..o,o=- dTi:-- + 'o f -;H-- + 2 -dx_-- m. " ax:-- p_))'

- 'd --t ],],o d ._x,o,_.o ,,-,o,l, o I 51:o _o,o _(_)l
'-',,o = eo_ dx; + a_,'-'° 1 '

,'v. 1, O,2, 0

_,.1 0,0 2

oo,o,.o d ,'_o',o'
o,o = -dx: -"
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Since the general formula (3) as well as the expressions of the coeffi- /_6

cients fJ1.J_ , noted a+,the end of Section 18, are given, we will have

_0, 2, 0 _0, O, 2 -o,o +_o,o =0, i£g>3,

Conversely, for q = 2, this sum is of the order of /_ while, for q = i, the
same quaptity is comparable in magnitude to uniby.

Section 20.

In the theory of secular variations of characteristic n_nor planets, we

must differentiate three c -es, depending on whethe_ q _ 3, q = 2, or q = 1.

First, we will consider the case where

q>3.

We h_ve seen that the quantities v_ and _' then satisfy the fundamental
re]ation

as in the case of ordinary minor planets.

Obviously, there is no basic difference between the theory of secular

variations of ordina _ minor planets and the corresponding theory of charac-

teristic minor planets, for which q _ 3. The t_ theories merely differ by the
fact that, for characteristic planets, the coefficients _:_'j.._and "'"_"Gy j,, depend
on _ and that the relation (22) ef Section 19 has been established only for
m = O, I, 2. Thus, in the integration of the sy,'_tem (Al) of Section 19, we can
apply step by step the methods used in Section k for the case of ordinary minor
planets.

The unknowns are expanded in whole powers of _, as in eqs.(8) of Section g.
The expressions given by us for the coefficients of the various powers of _ in
these expansions are still in force.

Let us recall specifically eqs.(12) and (12') of Section _. Let us also
recall that the functions [_], [_ ], [_'_0_']and [_'_'] are zero.

, p_2 p_,s appears _4_The quantity _i + _', _rhichis linear in _, , and , ,
raised to certain pov_rs, in the denominators in the various terms of the men-
tioned expansions.

In addition, theorem i of Section 5 is obviously valid a]so for character-
istic minor planets where q > 3. Conversely, it is impossible in this case to
prove theorems 2, 3, and I_of Section 5 since the relation (36) of Section 19
has not been generally proved for all values of m.
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Making use of eqs.(12) of Section 19, we can return to the variables _i_,
_, %_, _. As in Section 6, it is convenient to introduce the modu!i of eucen--
tricity and inclination by means of the formulas

_,=V_7¢o, _"= K,_¢% (1)

and to set also

a=:, (¢, + ,/',). (2_

We will consider 6' 6" e', , , and V'_ as being of the order of magnitude of
one.

The Quantity 6, which is of the second order o£ magnitude, js linear _<ith
" t 2 It_ t 2 "r

respect to _ , ¢ , e , and _. _n the case in which q = 3, the coefficients
of H_z) that enter the expression of 6 contain the quantity _ implicitly and
in a linear manner.

Now, the general solution of the systeu (33) of Sectior 17 (for q a 3)
assumes the form

..:,,j,, cos(:/'w'+ j" w"),
k--I j',j"

,,: s'_inw' + _ _ Ai2k+l).-_ •= _._,,,..... _' w' +" j" w"),
k-1 j'J"

(3).%
,, - cos + __ _ .(2k+,) _o ,_., j" w"),_;,,j', _'-'_,t; 'of -}"

k--l .j',j't

L; Efsinw"+ 2 _ r_,':_+') j"w").= _._',i" sin (j' w' +
k-1 jt,ju

The quantity [:e' , defined by eq.(8) of Section 19, can be expanded in
powers of e'_ and _.

The coefficients A(sk+1) and B(2_+z) (k = i, 2, 3, ...) are of the order of

magnitude of 2k + i. They are rational and homogeneous functions with respect
to the ouantities ¢' ¢", _', , and /-_. Only even powers of #-_ are encountered
here. Each denominator is a power ¢' of 6, where the superscript s is = O and
< 2k * i - 3 if j' - j" = %], but will be _ 2k + 1 - 5 if J' - j" / el. (Here,
the plus szgn refers tc the coefficients A and _he minus sign to the coeffi-
. _L.+I) . _2_+1) . t .

clents B.) the numerators of Aj, f,. .ap.a B_,.,,, are odd polynomla]S in ¢ , ¢t ,hll.III ,,
and e which contain t e factor ¢ ¢ if j + j is odd and the factor
! t ' _"I _ • •

¢ N Ie"| if j + 3" Is even. The other factor of _ach of these numerators
is a polynom/al homogeneous in ¢,s ¢,,s e,a, , , and _.

As in Section 6, we still have
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A_* _._ _-'k+n _ 0, (k = 1.2, 3.... ).

In addi-ion, the coefficients

._(2k+l) •_o , (k----],2,3 .....

vanish if ¢' = e" = O, since the special solution obtained in %i'_tcase must
coincide "_.ththe particu/ar solution (7) of Section ]9.

Finally, the £ractioml inequalities that _r.'._iycontain a divisor oa are at
least of the order of ma&nitude of five. The fractional coefficients of the
order of magnitude 5 are

a_. __;._,. _;, _k-,.
. "

Lst us now pass to eq.(kA) of Section !9.

V' _"In the function G, we ".d.il replace _' , , _", by their expansions 5_.
powers of _.

This __iI yield the expansion

(t,)

where g(') is rational in ao, ._, _, _', $_'. As in Section 6 (PP-39-il of

Part I), we ran demonstrate that the rational function g(t) is of the degree
2i + 2 with respect to _, _, _, _, _' and that, in its denominator, the

quantit_ v_ + v_ enters raised to a power which is at .most2i - 2 for terz.._
where J - J" = ±I and at most 2i - /,for the other terms.

In Section 6 (pp.&l-_],9f Part I), we gave, for 'he argents of the vazi-
• • [ !

OILSte._ssof the functions g_t), an upper Ixmlt for t le sum ,j I + I-',,I,j . In
the actlml case, it is no longer possible to prove the eTistence of this limit
since hhe condition (36) of Section 19 has been proved only for m = O, I, 2.

• + • _ (o) (1) (_)
Nev,rtheless, we can investigate t}.e_upctions g , F , and ,g in

more deta.:.l.We will use the denotation G_a_for _ ";b._"writin_ , _n, _6_, $_'
• 0' '' " " " "_ (_) =(IY (e)instead of • , V , _ , _ - Tnus, the _anted expressx_ns of g , _ , and g
will become

_0)__'Gto) i,_0 .-o Lo, , .r' _ , _°,2,°, d ,',' _,, ,Wr=_0 + 01,o _go r_'olT_O,o vJPo'ro_'r e'e e;,

= O_,,oI_,_?_, (5)
_" O"'+ ,.o _ q,,, '_o ,

...-O_,o'°(¢_.,f , +,r'o_' - ,P"o,f', - ,f'. _',), ( : )

_38
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• • Je

d Gc') ::,.,,[,.+ d G(" "'':"z
" _."odg'o rf'od CHoq o "'

+""°_ _"o-+,_V)
(7)

_.o i[_'.,r'4 [,/. q']l+ " x _".-- + .r_-1

,._._oi_"_'o,r',,,_.'o_"_,_ y'o,/',_e"___'.:_
4- _,o,_ t -1".q"o '/:"o_"'o I

• 0.0 "%1r • I ".J . _ SJ _ : 0 I _S ql ©T" $1l*

In _) • one could also ex_ect she er_.,: /50

e,__o([::"o,,'.':1+ [,f ,;":]- [_'o,/",]- [,/:".,;,"..]),

but this !ong-pel'iod term vanishes identically. In fact, in the function H
which is constant because of the first integral H = h, the long-period 9rincipal

te_ which is nothing else but

;i_°([_o,t',] + [,/. ¢":]-[,l,".,f',]-[,/'. ,/,",]),

m_'L, _an__sh.

g( ,I *_1_ I!Evidently, o) is a polyno _mial in "_., %o, _, #_, while in its _.onomials

"5o _o :9o ;c we alw_kvs have

I,,'-,_' + ,,"-,_"1+ ,,'-: ,_'+ ,," +,_"<< 2. (s)
,! f

Let us recall now that the lon_period parts of the functions (_o_z)

(_o_[), (_'_L'), (_";L') are zero and that the short-period pa_ts are _iven _j
formulas entirely sir,.i_arto the formulas (12 v) of Section i. Tbe:'e four f_mc-

tions, like ._x) and _l) , ape. po_5_omials in "_ , $!_, %_', %" whose exponents

satisfy the condition

I,,'- #'+ -"- #"1+ ,,' +_'+ ,,"+ 4"<<4. (9)

This same relation is also val_d for the polvnom&als _ and _z stance, on dzvmd-

ing Volt by _o and on dividinK _$_ by _, the degree _' + 7" + 5" of any

term will diminish by one whereas |_' - 8' + _" - _"I will be decreased or in-

creased by one. Thus, we find that g(_) is a polynomial in %_ , _ , c_', ,_'
which satisfies the condition (9J.

Let us now pass to g(2) . It is easy to demonstrate that the part of 5his

3.39

1965019998-140



r @t o.t t t
function which does not depend on _,o_] and [_] is a .:_lyno_.ialin co, Vo,
._I| -.It

, 'o which satisfies the condition

I.'-/+ -'-_"I+ -'+ Y + ""+ _"<< 6 (_o)

t t t t
Conversely, the .Dart of g'_) which contains the functions [¥07;] and [_o'_2]

is ratio._l "_th the denol_/r_tor (_ • v{')2 . !et us add here that, -n this.q ZI!
part of g'_', we Deve j' - j" = __iann, conseouentiy, j / _ .

Fir_lly, we can conclude that no terms with ve_ long period appear in

g(O), _=(i), and g(2). _Tnfact, for these terms we would have __' = j" = 2s > 0

a_, because of eos.(8), (9), and (IC),

8s <_<6,
from which it foll aws that

New, to obtain the expression of the argument Yl, we will proceed exactly

as in Section 6 (PP-L3-h5 of Part I). This w_il lead to the expansion

2k)
_.,_,, sin (i'w' + _"w"),

I:-i j ,$',

_(2x) iswhich must be approached from the formulas (3). The coefficient uj, j., of
the order of _agnitude 2k; this coefficient is rational and homogeneous with

rescect to the auantities ¢' ¢" ' and ,/_. Only even powers of /_ are en-. . , , e ,

countered here. The denov.hmtor is a power of 6_ of 6, where the exponent s
is _ 0 and

< 2 k -- 3, if__ -- ]" = O;

<_2k --4, ifj' - j" = ];

<_2k-- 6, _]'--]"> 1.

The n_merator uj. _, is an even oo!yno_iai in _' , ¢", and e' which contains the
factor ¢'l_q¢,,I_"I'_f j, _ j. -3 even and the factor e'¢'_q ¢,,l_'qif j' - j" is

odd. The other factor of the numerator is _.oOOly_omial homogeneous in ¢'2, ¢,,2,
e'_ and _: According to what, we know of g( _, g(), and gt ), the coefficients

_t_ and C_.,4_,are polynomials. The fractional inequalities of the longitude

are at least of the ordez" of magnitude of six. The fractional coefficients of
¢ . , . (6) (s) (s) _,. .

the order o_ magnitude of six are C_ , CAx,.-_, and C_ . . The _rst two coeffl-
(2)cients originate in the ration_l part of the function g , whi._e the third co-

efficient has its origin in [g(a)].

The quantity n is designated as the absolute mean motion of the planet
and can be expanded in the form of

liO
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n _ n{"_+ n¢:l+ n"} +-.-. (?L2)

We have, s_ectd'ical]y,

d rl,o,o,o
,tO, O,O,0

t (,0. 0,0 .-,0. _0. ,_

./1_2, ,_.0,o ./lpl,O, _ 0

=_.,_.'o._,o,o , (_.... _Fo,_,2
' dz_ " "-- _''') dx_

_.//,.I.2.0,0 .//._l.1, l,O z-l,l.l,O .IL-_I.O,_O t'.l.].l,O ol
.J"_-t'O.O.O.O 9U'r 0,0, 1,9 r 0,0.1,0 ur O,O.o, ol_" 0,0,1.0_- I

--!te'_l--dZ'---- d)" - _,,o,2.o+ d_"-I_i,o,_'_l ('
- _ ---'1 _ 0.0,0, 0 ----1 "_t'O, O.O,O" .I

exactly as for the ordinary _nor p!snets. The quantity n(_) (k : 2, 3, ...)

which has the expression 'ntz'_ = _ _[[g(k-2]] is of the,order,z of vagnitude.2k.
The quantity is rational and homogeneous with respect _o e , ¢,,z e,Z and @.
The dencrhnator of n(lk) is a cower 6= where the exponent s satisfies the condi-

tions 0 _ s _ 2k - 8. Thus, nCa) , n(e) , n(s) are polynomials. In addiLion,
the n(_k)(k : l, 2, 3,..-) obviously contain _ as a factor.

As in the case of ordinary minor planets, we must differertiate, for the

characteristic minor planets "aithq a 3, between two categories: regular planets
for which the divisor u[ + u{'is comFarable t_ unity and szngular planets for
which this quantity u_ + ul'is s:,'al2(of the order of/_ or less).

The integration method used in this Section is applicable only to ordina_r
planets.

Section 21.

_n this Section, we will treat the case in which

We have seen that we then have

Vii -pdU -p,_,+=,_,o_ + _ -_._+.,,o,_ _.

Let us start from eqs.(&l) of Section 29. Since the quantity vo + is of
the order of /_, the unknowns must be expanded in cowers of/_. We set
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¢ _ _f'o+ (!d'-,f',,_ + !_,f, + {!,':=,/°,_,) �!t,T', +.,":_#,_,

_" _ q,°o+ (!d:'-q,',:..)+ Etq"_ + (!d,_,',,) + !_, g,, + !,,;,q,,,:,+ ...

,f"= ,f., _-{;,'::,/.",:,)+ ;,_f", + (!,'_;,;",.;)+_,;,f"_+!,',,/,",..,+--.,

(2)
_',"-_W"o+ (!d':q,",;;)+ !t _"',+ (!d':;¢,",.,)+ !_;q.,";+ !f;q.,",,+ ---,

F' _ r"+ + (!+c-_r",.;) +!,t _,"_+ _!d'.-_J"f_.zl+ffs r"; -t-(!f' r",,,,,'4--- -.

it w_]l be shown below that the terms in parentheses vanish identically.

We will introduce the expansions (2) in eqs.(Ll) of Section !9 and expand
the two terms in powers of /B. A comparison of the two components of the coef-
ficients of the sane .Dowerof /_ will yield a sequence of equations by means of
which the various coefficients of the series (2) can be dete._mined.

' _' In Section &Let f be any f_ction expandable in rowers of _, _o, _', •
(pp.21and 22 of Fart I), _e defined the Tar_,s[f], [[f]], and {f} of the func-
tion f.

Below, it will be useful to employ the symbolic notation

o = ,,'oo' + ,,"oo". (3)

One ,moreremark should be made here: It is obvious that the derix_tive

z)[/]

contains the factor/_ because of the relation (i).

In view of this, let us first consider the independent terms of _ in
eqs.(_l) of Section 19. These terms vanish because of the identities

D (_e'.¢o) - O, D (_". ¢'o) ---O.

Let us then compare the terms m_itiplied by/_. We find the equations

-- D {_/"o_/_',,',)-- '/'I, t/"o_'o _ 0,

D ,_'o_/'"/,}- ,% ,'/"o¢"o_ o,

-- D {q,",_""1,_-- "',', _/'"oq"'o'="O,

D {t-,,,",t/,",l,] -- ,,",;,,/,,,o_,,o_ o.

_2
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These are satisfied by _outting

r p H

{,'/,,/,.,)= ,',/, ,/,:_.= _'o ,/', .' = ,,_'",_,..:}=o.'" (L)

So thah the ter_ with the factor _ s_hallvanish, the follo'_ng eauatior6
mUS_ be _"-" "-" " :Sd. t..L3± J.eo

i r.,[,/,o¢,,l - ,". : o,,, = 2_,'o-a_;%"
--= ' ' 1; " d H O)

--D [¢%,/,}--r',

1

D {,/, _e,) + I"_i O [,/'. ,l".;:]-- ,", ,/. q"o= 2 _', d H'"

L9 _T :::J--',_r,,9_o= 2q/'o-- zJlt%w O #, 11--1/ w
(l_ll

" ' 2 w" d H")
DIT , '''''v,, + v'+!,lD [,p, _/, ]_r,, ,p,,o_l/, = " * d;pi';-"

In view of the expression of [H([I)] which is a constant, eqs.(5) are /55
satisfied by putting

,,. .d[Iltm]] -..,._._, , ,/ 0,.11,_2 ,, ...... oLl.o

(6)
., ,,d[iHCnl] ,._t , , , ,.:., , i.o.2
'",==--- - " =--4Ho.o 'p,q ,--eHo.o'P,_l,--2Ho.o;

q,"odq/',

[_,'"o'/,,] = ['r'o '/",:,1= [ 'P".'r",_,]= [,r", q/',_,]= o; (7)

,-,_'I/*'I"',,'...._ 2[/'r4!'_'."""
J',"0+ i"¢%

I./],nl',Uil"
29'__!:j:!_. .

{,Foe',l= _ i, ,,,. + f, ,/,. '_l,
(i','i") (8)

¢J_,_ KI|, ml_,m"

i'', + f' *", _'

a It F/I,_°, rill"

['r",'l"',}= _ "" "_'a" _1i',;'.q-Y",'% "

As before and for abbreviation, we have set

1/,3

1965019998-144



The functions (8) are even and of the degree h with respect to _ , '4, _,

4', :_- The first t'_ functions as well as the two last ones are permuted on
permuting _ and _ as wel! as ":_'and _'.

The eq_mlity of the terms in a_. in the t_._members of eqs.(hl) of Sec-
tiou 19 is expressed by the equations

!

-z),'q,'o ' ' - _,-q,,:.., D[qQ T',] -- '"_._q", T'o _ O,

I D[,#, q,',]- r',j. 'F. _t"o_ o,i) [,t'oq_.:.}+ ¢,,
/56

1

-- D {q,"o't".':l -- i/,. D[q'"°'F"]_ '"'_.q'", "F'o=0,

ic, f ._.. _ 1 Y _,,2rp o
D _r o w ,,,j + i/u D [_P"o_w/,]_ . " #'o = 0.

To satisfy these equations, we must set

r

[q"o'¢,]= [,t'o_,] = [,P"o,F',]= [,t"o_"',]= o; (9)
{qJ'o',%}= _,t'oq",:,l=' .... ' ' ....." "tp _rl_',',1= trPotp ,:_ = O.

Let us now proceed to the power _. The corresponding equations are as
follows :

I

- D (,t,'o¢..}-- i_, D[q"o,t',:,]-- ,", ,,/o,p'o= V,'oA'_,
z

D _'t',q",}+ V_,D[,¢o,I,',:,]-- ,,',4° q"o= '¢on',. (10)

1 ff ?!

--D(_P"o'P",}--V)_D[°/0'/' '/,]--"', O".'fl'. _ q"'oA",,

,_;]:_O[,¢'o_p',_.]-- ,'"_,t"._".- _,"oB",.
D _,f'oq'",l+

Here, we used the notations (15) and (13) of Section &.

i
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In the case of ordinary minor planets, we have demonstrated the relations

[_V'oa': ] = [vP'_A',fl,

['1", B'..] = [['t'o B', j],

[¢%A".q_ [[,:,",,A":]],

['r"oB",]= [[,/%B,',]].

The proof, "whichis given on p'9.2J,and 25 of Part I of this rezearch, remains
applicab]e also to the case of interest here, because of the relation (22) of

Section 19 which is valid for m = 2 (in the actu&l case, where q = 2). /57

In addition, the functions ¢_, _ and _ as we22 as _'A_'and _'B_'are
ef _!

permuted on permuting _o and '4oas well as 4' and _'. From this it can be con-
cluded that

[[e'oA',]] = [['t'oB',]],

[[V-";oA",]]= I.["F'oB",]].

In view of this, eqs.(iO) can be satisfied _" puttin%

[[¢/oA',]] [[¢,',,A",]] Cll)

['P'o'f%]= [¢'o¢"; o[¢'"o¢%]= [,/'o9%]= o (12)

and by giving, to the functions

',¢'o_',}, :.,t'o",,,, :,/,"o¢",}, [,/'o,#",} (13)

certain well-defined expressions. The first two of these expressions as well as
the two last ones are permuted on pe1_uting _ and @_ as well as q_'and _'. The

functions (13) are even polynon_ialsof the sixth degree with respect to eo, _,
• The quantztles v2 and v_ are polynomials of the second degree in.. , ,' ,i! I! l! • • _ ! _

eo, fi_o,_o and _3_o, x.e., in eo, Oo and p6'_.

Let us then compare the terms containing _'q_in the two members of eqs.(L_l)
of Section 19. This will yield the equations

I

--D {'1"o'/,;2, --_itD[q:'o,/,]-- ,/,;,'P'o'/0= O,

! D ['/"o e%] -- '"_,','Fo q'% : O,
O ['1"o_1."_,,._,}+ Vt,

_5
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1 D [_p"o'/S] _ ' _:,# oq"'o= O,,, , ¢, 7t

D {""'o'f 'l.J- V_t

D ' " ,.,, , 1 D ['f"'o 'I'",] "- J ':',':'/"'oe"'/.,.= O.

It foiio,:sfrom this that

[¢'o_',]= C9',_"d= [*",_",1= [_"°,%1= o;

{¢,o_,,:,}= r,q,,o,1,',;,}--- ,._'*'"'o,_"_.,.,,,_--- ',,p",V,",_,}= o. (i_.)

The next step will furnish the quantities

¢,, ;,,, (!5)
as well as the functions

r ¢ £ _f•[_,'0_,,.,1.[,/0_..:,1,[¢"'0_,al, [¢/'o_e,,_,]; (2..6)

.[¢,'o,/,}, [,/0 V",}, [g"'o ,/',}, {9"-*",}. (17)

The second _lembers of the equations [analogous to eqs.(lO)], from which
all these _uantities are determined, are even and of the eighth degree v,ith

f ,T f

respect to eo , qb, '_o,gb, $_'. It follows from this that _ and v_'are poly-

,s p_'_and that the functions (]6) and (].7)
nomia]s of the third degree in _,, 0o, , q_',.are of the eighth degree in co, _b, 4o, _o.

Evidently we can continue in this manner without ever being stopg_d.

By induction from i to i + ] and proceeding approximately as in the proof
of Lveorem 1 of Section 5, we can demonstrate thst the quantities

t r,

,'t, ,'k, (k= o, 7,8,...) (18)g _

are po]ynomia]s of the degree k - 3 with respect to _, 0_a, and 0_'a and that
the functions

[< ['P' [<%']' ['P"%'1'
09)

(k= 6,7,8.... )

{ { :4 /" {, 9'0 _/ , _/'o _/'*' , '/'o ,
9"o't ., t _,

._.6
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are Polynomials of the degree 2k - & with respect to eo, Y'o,%, , •

After having formed the expansions (2), it is easy to write the solution /59
of the canonical system (33) of Section 17. Let us recall that the variables

_' _" _" and the variables _} _* :* TI__"are linked by the formulas (]2), , , , 'll , _ J

and (30) of Section ]?. _j putting, in eqs.(2),

k

, _ _ A (p) ,et,'-l(fw'+f,_.,)II 2 (]_k._ 1 $',$' ,
2 j,,j,,

(k = 3, 5, O,7.... ) (20)
k

-2 j,,j,,

and by introducing there

"= Vi-' e'o, ,"= V;,;e",, e' = V_ ,,, (21)

the general solution of the system (33) of Section 17 (for q = 2) wiT_lassume
the form

- 2__, cos w' + _ A(_).,, wF,,,,., cos (j' +j",o"),
k--3,_ 6, ... f,j,r

'/_:= _' si. tot-{ .- 2 ,_ A(k) j'tW"),--i',J" sin (j' w' +
k-&5,G,.., j,j"

_,:* cosw" + __ _ p(k) (22)•"i." cos (j' w'+ j",o"),
k-s,s,e,.., j:,j,,

,_,*= t rrsin w"+ 2 _ ,_(k)_i',i" sin (j' w' + j" w").
k-3, .i,6,... j', j"

The chuantity_-:e'• . , given by eq.(10) of Section 19, can be expanded in powers
of e'" and _. [The coefficients of this expansion are rational in _ since the
coefficients of the expansion (1) of Section 19 are linear in r_.]

The q'_antitiesAI,,_,,and BI?I,,are of the order of magnitude k (considering
f I! T .....

¢ , _: , e , and ,_ as quantities of the fxrst oraer of magnxtude). These are 6_
odd l_lynomia]s in ¢'. ¢", e' with coefficients that are rational in /_. The
quantities A(a) and Bc_) are of the third degree, while A_) _nd B_) are of

• _ . _ _ ) •
the fifth de,ree w_th respect to _ , ¢ , e . The degree of A, ,,(k a 6) w_thF ,, , , ,, ,,
respect to ¢., ¢ , e is 2k - 5 if j - j = +l ,and2k - 7 if j - j ._+]., The
degree of B].,_,,(k _ 6) with respect to ¢', ¢", e is 2k - 5 provided that j -

_.,I_"= -1 and 2k - 7 if j' - j _ -1. These,_I_,l_°lyn°mials,I_"I contain the factorI ¢,,1._"1if j' _ j" is odd and the factor e ¢ ¢ if j' + j" is even. The
other factor is a pol._momialin ¢'_ ¢"s and e_, , . As soon as k _-6, the

1A7
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r_

r_

A( _ ) _,(z )
quantity /_ may appear in _,,y.and _j, _,raised to a ne ,"lye _ower _:.

(Vt,)-'.

-j"=+l s=k-7 if] - ,"t+l:inIn _, ,,we have s = k - 5 if j'

B_,, we have s = _ - 5 if j' - j" = -.i but s : k - 7 if j" - j" / -].

We still have

A(k) 7;,Ik)
+l,o_- O, _o _-1e- O, (k = 3, 5, 6, 7,...),

tt r_

(since the functions _'o _F'k-1,q"o t/k-l, qJ"_(_k--],_tto _'k--1do not enclose any constart

tenv,). - 2- -2- _- _-

In addition, the coefficients

A'o,%' (k= a,5, _,7.... )

vanish if _' = ¢" = O [since the special solution which is then obtained must

coincide with the particular solution (7) of Section 19].

Among the coefficients that contain /_ raised to a negative power, the most i"
im_ortant ones are those of the sixth o-tier of magnitude, name2y,

j(e A(_6)i,_2' ,Je) t,,6). .D2, 3 p _--2, --I •

They are of the seventh degree, with resre_t, '-,o _' , _", and e' . I

Finally, the arguments w' ano _,2hav_ the form

w': /l L + /, W"=v't I +7 't.

In the expansions (2) of v' and v", the quantities i_!

tl

_ ' 't'l, and [t2 'Pk

are of the order of magnittae k. In _d4ibion, these quanbiti_s _ _lT_omials
• '_ ¢_ e'S whil_ _ 'wlth respect to ¢ , , a _d , ,_,_ and _v{' are of t;',- _': :'_30 degree;

F

v_ and _ are of the second degree; fina!_y, /. ,,_ and ,' (for k = 6,
h

7, 8, ) are of the degree k - 3 in ¢,s ¢,_ e,_

Let us now pass to eq.(hi) of Section 19.

In the function G, we will replace _p', _/', _", _" by their expansions ('4).

lh8
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On expanding in powers of _, we obtain

-- 2 tt,g(_)(7 !t" G(''_)_, _ i
rn_O

(23)

=.g(o) + Ctglz)+ trig(2) + it _9,_, + !tsg(3) + ....

It is easy to give the exr,ressionq for the four first terms of the expan-

sion (23). Let us denote G(m)for _ ")by writing _, _, _', ;_'instead of
_' , _', _", _". After this, the mentioned expressions obviously _i]] be

90) _ (_lo)_ G°,°,° ,Lo qo,o +_,o (_po+_",)

.,O. 2, G t . _0,_, • '+ oo,u T oqJ'_-t- o,o "_P"oq"'o,

_0.1, 0 .fit f,O, ?, 0g(_)= (;c_)+ _;o _/'_ + V/,) -t ,..o,_ (q/o¢_ + q¢. _l"J
• ,0 O, tt

+ Uo',o (q/'o q¢', + ¢'o _P,),

a_.,. , d6_,_ , _a._ ,, + _"!,,,,,
o<:_:=at=,+ _;r,,,r,+ _,o '/', + _,F'.'p' d,/,"o"' (2_)

Oo _o,_, Coo;_;o¢,_,,, + _o,o,2 ,, _,,,+ 1;o' (?_ + q/_) + ¢io,o _ ,

l _,O, O,2 l ,tt'r _t+ oo,or°':'°'e"_;o'f'=+'["_ _':) _"Jo.o _ oq__+ ¢'o q/'_),

_ =..,,,, _ _,; + _;_,. -;

'°([';"'"i]+["'0%1. ',JO, 0

,,oo,([ 1[ i])+ ",,.. q"'o 'f_ + q_"oq' •

As in Secf_on 20, we can see that g(O) g(Z) and g(_), , are po]ynomials of
the fo_

O' _' _"P',t'."'_ ,t;_''_. ,

in which the exponents ,'¢ , _', o_", _" sa$,isfy,respectively, the conditions (,8),(9). spa (]0) of Section 20. From this:,we can conclude that [g( )], [g( )]

and [g_2)] are _,-nstants.

It is easy _0_.damonstratethat [g(_/_)] is of the order of _. In fact, the
quantity _ . _ is of the order of ¢_ for q = 2, whereas the function

[¢. +,,o ,, ,,]' ' '--'P.'f_--'f"._ is also of the ozder of¢_, because _f the first

ik9
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integral H = h.

It is obvious that g(im) is an even polynomial in _b, t", 4", q_',_"_ . We

_*_te tb_t this _o!ynom6.alis of the degr._e2i --2 as long as i > &. We also
state tthatthe terms of the de_ree 2i - 2 of g(iP.)are terms of the degree 2i -
- 2 of ';hefunction

,[_,'o,;',15' ,'"IT. _"I*
,,',0, !,01 [ " tU ,, _. ,j,

""° U-,J.--+ ¢.-!

+ ',i]+[',,
p,.,71)"i] +

in fact, the function E(li_')is composed of terrs having the form...

i

C,[ ,"' ¢.' 'i, "'" ';" "''_,," " ,',",."'", ,',"" ",,,.:"" .',""I ,:'" ".,."" !... /b_3, p= 7z I: _ I., -'r5 I': 'F._

,m i " d;lm �|�P�,,'-n,"+nI_l"l •

""'Ji : q';"''' "" '"'' (26)• _F,.,__I " ' ," -'" " -,;"--"..... -",,,' ---_'- "--_:'', (ar,J t4,_.j (d:fo) (d,',,}-

where the exponents satisfy the condition

: r ,i i

-_ k-- 1(re_k- , + ,,,_,-,-,n,-, _ ,___,_+ m =_. . - (27)

r

Accord-Lugto th_ above statements(pp !.',5-1+6),thefunctions O_-_2,:/k-,,,/___,
z i- 2

_'_-, are of the degree 2k - 5 as long as k = 5, 6 ....
2

4. I

Thus, the polynozXal (26) with respect to e_, ,_, vo, c_",#_',is of the
degree

I= 3(m', + n't + m°', +._.",)

'+' ( ' n' ! " '_)+ _ (_.k-5),,._:+ ,-+ ,_j +. ,
k-$

+ 2m + 2-- _(m' + n' + m" + W')

= 2(m',+ n',+ m",+ n",) + 2m_- 2

+ _ (_--_) (_ , +.:;, +_.;,-_.k-3,_,A...i+l

150
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In view of the condition (27), we ,nave

l=2i+2--2m--2(m' l+n',+ m",+n",)

i+-

--4 tnk t + tt_-, + m : + n .

k--5 --2-- *--

Consequently, we always have I _ 2i + 2.

It _s poss._bleto have I = 2i * 2 only if

re=O, _z_(m' + n' + m:' + n")--O

I.e., because of ea-(27), onl,7for i/2 = C.

It is po..:ihie to have I = 2i cn]y if /61

m + (m', + n', + m", + -.",) = 1,

i+!

%_ m t -l- ,,k-s J- mk s--n, , =O
k--S o "

i.e., because of eq.(27), _nly for i/2 = I.

it is possible to have 3 = 2i - 2 only in one of the two cases (=) and (o):

(_) m + (m',+ .', + m", + n",) = 2,

i+l

(3) m. (m', + .', + m", + n",)= O,
i+!

. ,n__,+ ._! + ,,k.__!+ nk = 1.k-$

The case (._)can be realized only if i/2 = 2. In the case ($), the function (26)
reduces to one or another of the four functions

, d_(°_ , dO(°' ,, d_c°_ ,, d_ °_

It follows from tnis that the cart of g(t/2) , which is of the degree 2i - 2 (if

151
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i > &), is present in the function which is the sum of these four functions or
else in the function (25).

Final]l-,because of the first integral H = h, the terms of the degree 2i -
- 2 in the function [g(if_] obviously con_ain ;_ as factor.

Now, we can write th_ various functions that appear in the expansion (23)
in the form oL

g(';)= -_=J.:.,"(9_.¢qu..J,¢._ (2_)
f.i"

According to the above statements, the quantity _¢/_,!is an even polynomial /65
in p_. o_, and %. The degree of _o_. is 2; the degree of _,,_,,is &; the degree
of g, ,=Is 6: the degree el _,,,. (for i > L) is 2i - 2 if [3 - J"[ = 0 or i,
and_2'i'- &. if l J' - J"l > 1.-"Fir._lly, the part of the degree 2i - 2 of the
function _i_)includes _ as factor.

In view of the expansion (23) as well as of the expression (28), eq. (A/_)
of Section 19, after integration: will yield

"_ :' "' + :" '/' sin (f w' + f' w'9" (29)i.0,_4,5..,y Y

The integer j" is even, so that we have j'j" / O. The quantity c is an
arbitrary constant. The expression of the constant n will be given later in the
text.

The quantities v' and _" are expanded in powers of ,_ by the two last of
the equations in the system (2). We will expand the quantity (j'_' + j,,_,,)-1
in powers o£ ¢_. Then, two cases must be cifferentiated depending on whether
4 = j,' _' _,'or _ / ,_ •

We will assume first that

_ _ °f' j

By putting, for abbreviation,

t wt

_k "_"_k

_,'-Sr_;_/'= ,_, (k=- 2, 4, 6, 7.... ),
q

we can set

1 V& i ,J .|
z ,,"): Vii _-(.,':-_-,,".it_+' _'+' '"i('" +

+/t_' "' + ;" "l +"" (30)

152
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-- t)lt Ivi . . ,

We will then se::rchfor the dejree of the polynomial 6_s/_). This function is -.--/66
composed of terms of the for_ of

n, nS@l

C ,,", ,,,": ,,", ,o_,_... ,, -_. (31)$ m@l

where C is a numerical constant. The exponents n_, n: .... n_! satisfy the condi-
tion _-

s+]

zJ
k--2,4,6,7...

We Inow t,hatvI and v, are of the degrees 2 resp. k and that ½/2 is of the de-
gree 2k - 6 for k -_"6, 7, .... The degree of the term (31) consequently will
be

m4-1 t �N=2n, + 4n, _- _.(2Ic--6)nk=2,--2n.--4, . _.n_.

k--6 k--$

We therefore have

N_< 28

and
N=28

by putting, in eq.(3i),

n I _ 8, n_ _ _s ..... nj+! _ O.

Consequently, we see that 5J'/_)is of the degree 2s with respect to p_, p_,
and %.

Now, we will put

where the first polynomial is of the degree 2i - & and the second is of the

degree 2i - 2_ with respect to 0_, _, and eo

We know that _6_
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g -_0.

BE making 1_e of the expansion (30), we can introTJce into eq.(29)

i i

__ ' L J _ /_(k)

,-,J(;'¥;"}-_,J (32)k-1

by putting

i
iIk--s--I) k--#--_

_:)l., g"(--,-" (k=7,s,.._ <33)cl._]= - ;'" _ _%J + j,j /- •
#--0

',k
Obviously, the quantitF C_,_ is of the order of _agnitude k. According to

what we know of the polynomials 6_'/2) , g/j--_--, and g,,,--=- , we can also con-, j,j

clude that C_,_) is an even polynomial of the degree 2k - 6 with respect to Oo,
O_, and eo or, if preferable, with respect to ¢', s", and e' .

We will now assume that

f_f'.

- Then, by putting for abbreviation

#I # "rf er_'_+ _ _k

_[.... Y= _,_,;/'_'.+ ;/"_';

we obtain the expansion

1 1 { 1 + _"_=._',,,+,_"_'= j;--_'/¥-;Fo,,'--'-_+_'"

+ i_',%+ _,|v,+ •-}-'' (3&)

=_j_)_.,+ ,,,_}_,j,, �,,'o,"-)+ ,,,.,_3.)+ .,¥D + ...., , , ,£,_,, . uj.,#, t j,,.#,"

I_.t_s then search for the polynomzal 6_::I.-> with respect to Po, _', and eo .
This polynomial is composed of several parts, having the form /68

C ,,,",,,"_"'J;.. _,: (35)

where C is a numerical constant; the integers n%, ha, ... nWa satisfy the rela-
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tion"

knk=8.

The part (35) cb_iously is of the degree

k--6 k--6

It is possible to have:

N=2a , only if n,=n: ..... ..=0.T

i.e., for s = O;

N----2S--2, . , n.=l, n:=n. ..... n.=0,

i.e., for s = 2;

N----2_'--4, " " 2n, + 4n,=4, ns_---n4..... n, =0,
W

i.e., for s = _.

For the other values of s, we will have

N----28--6 by putting n:--n, ..... n,_,=0, n.=l.
-2- r

Consequently, in e(_(3&), the _uantity _(o) is of _he degree 0, while 6(,I_.,is
of the degree 2, 6_.,_..is of the degree _J:J" _('_) J'_, and _j; y. for s a 6 is of the degree
2s - 6 with respect f,o p_, p_', and eo.

We will now put, in eq.(29) and making use of the expansion (3_), 6_

i i
. U, +l n(,)

., , _,.j,, (¢ ,, j,,).= "" " 06it.o,2,_,b..._ "v+I v k-_,4,e,7....

Here, we have used the notation

_-_ (_-,-_%

,-o ;_"J" ' (37)

(,_- _,4,e,7.... ), (i' ," i").

].55

L

1965019998-156



This quantity is of the order of magnitude k; in addition this is an even poly-
° " f ! " f II !

nomlal wlth respect to So, P', and e_ or else wlth respect to ¢ , _ , and e .
• _._)• " _.4). (e) .

The quantlty C_.j..Is of the second degree; C_.j,,is of the fourth de_ree; Cj.j..is
of the sixth degree; finally, for k = 7, 8, ... , ths polynomial Cj._,,is of the
degree 2k - 6 if l J' - J"l = 1 and of the degree 2k - 8 if l J' - J"l > i.

Now, in view of eqs.(32), (33), (36), and (37), the expression (29) takes
the definite form

y:=-' + + Z (j'.'+j"w").
k--2,4,8,1,.., j',j"

This is a formula analogous to eqs, (22).

• • (k) .....The _]antltles Cj _ are of the order of magnltude k (whlJe conslderlng ¢',t • Y • . . •

6", e , and /_ as belng of the flrst order of magnitude). These quantities are
even polynomia]g in ¢', ¢!'j.e' with coefficients that are rational with respect

to _. The polynomials C_,a_.are of the degree 2; C_,4_. of the _egree &; C_,e_,,of
the degree 6 with respect to ¢', ¢", e'. The degree of C_,k_,:(k > 6) with _-
spect to ¢', ¢", and e' is 2k - 6 if lJ' - J"l = 0 or I b_t only 2k - 8 if lJ' -

- J"I > 1. All these _olynomials contain the factor ;'lJ'l_."lJ"l,if j! is aeven and
the factore'Dil_.U.lifj is odd. The other factor is a polynomial in ¢' , ¢ ,
arlde'2.

_(_)
As soon as k > 7, the quantity J_ may appear in _j,p,,raised to a nega- _.O

tive cower

(Vi;)-'.

According to _he above statements, we have s = k - 6 if lJ' - J"I = O or 1 and
s = k - 8 if lJ' J"l _.(k)that con_in _ raised- > 1. Among the polynomials _, j,,
to a negative power, the most important are

d_, C"' .,.,c,,1,2, %_2,2

(as well as the three C5__2, C£_._,,C__, which are identical to these). The
first two polynomials originate in the function gLS_) r [_(6_)] [see eq.(2_)].
The last polynomial has its origin in the functions [g(smr] and [g(3)].

The absolute mean motion can be expanded in the form of

n=n (°)+n(_)+n(4)+n(e)+...

The quantity n(k) (k --&, 6, 8, i0, ii, 12, ...) which has'the expression

k k

n(_).--_-- ,_, [[g(_-")]], (/c= 4,6,8,I0:II,12,..;),

is of the order of magnitude k. The quantities n(*) , n(e) , n(-e)are polynomials"

±56
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of the degree ], 2, resp. 3 with respect to ¢,2 ¢.2 an4 '_, , _ • For k a ]0, n(k)
is a polynomia2 of the degree k - 6 with respect to *"_ _"_ and e'_, , • We have,
specifica21y,

a i_:°'°'°
n(o)= x:- s, n(_)= - !' ---_-,

n(_'_-- s" [[g(o)j]= --t" (("°:o°'°+ t,o."'o_'°Qo"-,--ooo;o'°,,eo-2,j

.2 _2,0 0 0 .2 _.1,0,2,0 ,4 "-:.!,0,0,2
2 u' [%'00'' _&00,0

II --- "-t,.... It _ft _ II _frs_ _)0, 0
' d_, ' dx: ' -d_',.

I.., _,.I,2,0,0 A, -_..I,1,1,0 _.1, I,!,0 .2 ,_,.1,0,2 0 I _i,l,l, OLtl

cle_'Ic_°°'° o_ 6,.o .q.o _ _ _%.o ' I_'l.o | (

Section 22. _!

Now, we will study the secular variations in the case in which

f=].

In this case, the quantity v_ + v_'is comparable in magnitude to unity.

The quantities v_ and v_'depend on the parameter x_ (or else, if preferred,
on the mean absolute motion of the minor p2anet). By varying this parameter,

it may happen that a divisor

J' "', + f"/'o (i)

becomes small (of the order of _ or smal2er).

In this Section, we will assume that the divisors (]) are not"small as long
as the integers j', and j" are not both zero.

We will again start from eqs.(&l) of Section 19. In the actual case, we
can there introduce expansions of the form

'P'=¢/o + I__P'l+ I_'_P'=+'",

_'= q_o+ II_',+ !,'q,',+..-,

_P"=_P"o+ ,"_",+/" _P",+ "",

,,,,,,, . (2)_/'"=q/', +, -_ , + _'_"_+ ..,

_"=r'o +l'_',+l _'_ +'",

_'"_ _"o+ l__'"_+ _Ill _"_ + "'"

157
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i
L

L_
On expanding the two members of the mentioned equations in powers of _ and com-

paring the coefficients c" the same powers, we find equations that successively
determine the terwq of the expansions (2).

First, the equations are satisfied for _ = 0.

To have the terms in _ vanish from the considered eq1_tions, it is neces-

sary that /72

D(_o _fll) --'"1 'P'o'P'o-----2 _P'.d H(:)- a_'

d HCf)

.,,an_,) (3)
-- O (q-"'o_¢'1)-- ,'"1_P"o,¢'o= 2 _ o a,-_-o '

^ _ ,r d HO)

As in the preceding Section, we have put

D _ v_oD r+ v"0Dr,.

In addition, we will denote by

the mean value of any function f, which can be expanded in nmltiples of the

argt_nentsw' and w". Besides thist we will denote by _ the monomial

_...___'o a' _j'[1' _'_a" _jo8" 'mr "m" eV_CJ',_'+_",_,,_

In view of bhis, eqs.(3) are satisfied by the expressions

2d[tH(1"l]]_ 411' 4,0/ rjl, 9,, ,, ...... 1,,,0
'"'= -,,¢;a-(_'-,-- _:_J° e'°-- 0-,,o,o,_o_,-'-'-o,o,

," =- 2d[[HO)]] 4H _'°'__d' '"" o 11',_',_ , ' 2H',o, ', (&)
_ -- ¢-_,o-d-¢,,0_ -- o,o r o'r o-- - ,,,_ _, _/"0-- o,o ,
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'Fo'F,= _ 2.' I&7,:....i",;'i_:J";'o_n, (5)
tj' ,, j")

n of! _1,r7_1, yrSt_

_,'to¢P"l"_ -- _ _ P 3"_(,1'___snlj' ,,'o+ _' v"o ....

rf' oq2"1 .,',;'

The integration constants have been equated to zero, which is permissible with-
out interfering with the gerLerality.

The functions (5) are even polynomials and of the fourth degree with ze-
spect to eo, _, _o, 4', _'. The two first as wel] as the two last functions

are perw,uted on permuting _ and _ as we]l as _' and '_'.

By mutually equating the coefficients of _ in the expansions of the two

members of eqs.(il) of Section 19, we will then obtain

-- D (¢'o_'_)-- ,,',0'o,#o= _'o.4'_,

D (,,O'oq,'_)- ,,',_'o,/,'o= _,,'oB',, (6)
-- D (q2"o"p"=)-- ,v"_q"o ¢fl'o= qa"oA"=,

D (_"o q/'_) -- _"3r,O"oIp"o= r/)",B"_.

The second members are known polynomials which are even and of the sixth degree
,! !

with resoect to eo, _, _, •• _', _' The functions Vo/_ and _ as well as
_8'A_'and _'_' are permuted on permuting _ and _ as well as _' and _'. Conse-
quently, we can cause the constant terms of eqs.(6) to vanish by posing

r[q,'oA',]] [[¢'oB',]]
'", =- _,:,p;o =- ,A-_O'-o-'

[[,f,oB.,._]. (7),.,, : -- [[q'"oA",I]" _'o,:. = - _"-.-q'"o

Then, the_e eq_Btions, after quadratu_.e,will yield the expressions for the
functions

,1"._t'_, 't'oq",. '#",'1:'_','i"o'P",. (8)

The quantities (7) are polynomials of the second degree in _, , and _'_. The
functions (8) are even polynomials and of the sixth degree with respect to eo,

, $_, _', _'. The first two functions as well as the two last functions are
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permuted on permuting _ and '_ as well as q_'and @_'.

Evidently, we can continue in thi.._marner as far as desired, and succes-
sively determine the tetrasof the ex_nsions (2).

It is easy to demonstrate that the quantities

6,o_a,_ (9)

are polynomials of the degree k "n _, p_2 p_,2, and and that the functions

'Pi, '¢,,, 'P'_, '¢'_ (lO)

are odd polynomials oi"the degree 2k + 1 with respect to eo, _, _, 4', _.
This theorem is proved in aLT_st the same manner as theorem 1 of Section 5.
Consequently, it seems unnecessary to discuss this further.

After integration of eqs.(_l) of Section 19, it is easy to write the
general solutlon of the canonical system (33) of Section 17, which is equivalent
to these.

For this purpose, we introduce in the expansions i2)

_'=_¢o, _"=v_¢,o,_'=v;i,o. (n)

At the same time, we write there

I@'+j*r W*')
, " ¢Pk = Za _#,j,, c

i'j"
(_= l, _,3.... )

,,,_+'_rr_-= _ -J'._',"_"l_eY-iu"_'+'_"'")

In view of the transformations (12) and (30) of Section '9, the wanted
solution takes the form

_'=_+E w' _ A12_+" i",, cos + ]_ _'a" cos(i'w'+ w"),
k-1 f..q,'

,," e' sin ,o'+ _ Z a_"'+" (12]=, ..,.,i. sin (j'w' + j"_o"),
k-1 j',j,,

i:. = _,, _ Z z)($k+l) W'.,, cos ,o"+ _,,,,cos (j' + j"w"),
k--1 j', 2"

,iI =- ," sin ,o" + _ Z "('_+'1 sin ¢i W + j" w")•,,,,p ..'
k-]/'j,,

, O

16o

' $2,"> , ,, ,

i
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_:e , glven by eq.(10) in Section 19, can be expanded inThe quantity,- ' "
powers of _ and e 2 (the coefficients of the expansion are rational in J_).

T...... (2K+±) - _(,_k+1)
ne quan_1_mes a_,_,, ant _. j., are of the order 2k _ i, consider_ng

_', e", e', and J_ as quantities of the first order of magnitude. These ctmnti-
ties, in addition, are odd polynomials of the degree 2k + I with respect to ¢',
¢", and e'. These _o]yno_Jialscontain the factor ¢,lJqc"IJ"!if j' + j" is odd

1_'le,,T_i • • + .,,.and the factor e ¢ if 3 3 is even. The othe."factor is a poly-
no_Aa] in ¢'_ ¢"_ and _'_

We still b_ve

A(2k+l) _'"k+l) _+l,o-O, _).+l =0, (k:=1,2,3....),

(since the functions _ and _8'_'include no constant term).

In addition, the coefficients

A(2_+])
o,o (k_ _,2,3,...)

are canceled out if ¢' = e" = 0 [since the special solution obtained in this
case coincides with the particular solution (7) of Section 19].

Finally, the arguments w' and w" have the form

w' = _,rit + _,, w" _ j,rrt_ -t"_/e.

In the expansions (2) of _' and v", the quantities _k_ and _' are of the /76
order of magnitude 2k. In addition, these quantities sre polynomials of the
degree k with resoec_ to ¢'2, e"2, and e's.

We will next investigate the secular inequalitie_ of the long_tude.

The function G which appears in the second member of eq.(AA_ of Section _9,
is dcfined by the formulas (&2) and (&3) of SectiOn 19. We will there replace

_' _,,•' , , _", by their expansions (2) This will yield

."'_(". (13)
m-O i-O

in view of the fact that the polynomial G(') is even and of the deg_._-e_n + 2
with respect to eo, _' , _' , _p"_*" and that the polynomials (I0) are odd and of

the degree 2k + i with respect to eo, _, _, _, _', i,ttis easy to demonstrate
(by making use of the method given in Section ,5)that g_ _ is an even polynomial

! II I!of the degre 2i + 2 with respect to eo, %, _o, _8, _o.

We have, specifical]_v,

161
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g(O)_f,o.v.o _..l o. , _t,,o) /,o.2.o G°'°'_'_" _"o-,.,o,,_ +u1,,; tTo+ +'Jo, o q"o'_"o+ o,o r, (l.&)

_i arranging it acco.-ding to multip]es of the az'gumen_s w' and w" the

function g' ) can be given the form of

f,j,,

The ouantities g_.__,,are even polynomials of the degree 2i + __with respect to$

Po, P_', and eo.

Thas, ee.(M_) cf Section 19 will yield, aftel integration,

j_i+] n(i)

._'._,,_-o ,., s,n (j',,.,'+ (16)

Here, c is an a/Ditrary constant; n is the constant term of the second member

of eq.(_) o£ Section 19. In the sum o£ the expression (16), the integers j'
and j" are not simultaneously zero.

The quantity (j'v' + j"v")-! can be expanded in powers of _ because of
the expansions (2) of v' and v". By putting

(j' v' + j" v") -1 = _") + pdo) + !_, _c2, +..., (17)

it becomes obvious that 6(") is a po]yuomial of the degree s with respect to

r8 "_ and 4 •Po , Po ,

Making use of this expansion, we introduce the following expression iu

eq. (16) :

itlq-I ,_(1)

k_z_-'j',j ', •

We have here used the notation

k--I

C$(_k|
.,,.... ,,_, _ ac.)._-.-_) (_ 1,2,3, ..).' - ' "

,ll_O

The solution of eq.(_/_) of Section 19 will thus become

w',,'" sin (j' w' + .. (19)
k-I j,,j,'
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• • • __k) _ - .¢. .... _ .
The quantities C_;_,,arv of the oraer o_ F.egnltude2K, considering e , ¢ ,

e', and F_ as being of the first order of ._agnit'ohe.These are even po]:mom2ais
of the deFree 2k _th respect to ¢', ¢", and e'. These _.o!}_omZa]scontain the
¢_,.+_.. _'{3i{¢,,D"{ _._._=_ _' . -_" -',,_ver_ _r_ i-h_ ¢=t-_-_,_,_,c,l_'l_,,_.I'{-¢ ., , _,,

is odd. The other factor is a ._oiynomialin ¢,2, ¢,_--and e'Z .

The mean absolute motion n can be exFanded in the fo2m of

n = nCO_+ nt_4+ n(') +nm +... (20)

The Quantity n(zk)(k = o, 3, ...) which has the expression

n_,_)= __ !,k [[gck-._)]], (k = 2, 3.... ),

is of the order of ,_agni_'tude2k. _-"_.._sis a oo!yno_2al of bhe degi'eek - 1 /78
with respect to ¢,2, ¢,,_,and e'2; the ouantities,n(_) , n(4) , ... all contain
as factor. We have, sFecifically,

_ !,o,o,o
d ,_o,o

n '°_= x'_-s n(*-I= -- !' "dx_-'

n(O = _1_ [[_(o1]] = ,,_ t_o,o.o_ GO,_,O ,_ f_,o,o,-"....--:, _o.o . o,o q, +vt,,o _0")

_-%0,0,0 .t _{,o._.o ___.0,0,2

.... ,It ,15 - '. It -- --
" dx 7 dx, ' - dx_- (21)

|.1 "r.l,_0 _; _'_I, {, l,O _{,l.l 0

_,,e,,_',,_o.2 9_6,.o L_],o'.
" I dzf - d," - ,-.,.o._,o0o, o

_ l, 0,2,0 . _I, l,l,O, _|

dt_o.o /t_,.o I g
+ • " "--fo.4b "dz, _iko' !J

In this Section, we have assumed that the divisors (I) are not small. Let
a_ssee wb_.thappens if one of these divisors, for e.x_mple,r_ + (r + s)vd'be-

comes small. For abbreviation, we will put

r ,,'. + (r + s) ,,".= _r. (22)

In view of the method used in forming the coefficients of the expansions (2)
and (!3) it is easy to show that the functions _ , _', "._',"_',and g ) contain
the factor

and that the quantities _ and v_'contain

o--k ”,]63
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and, finally, that the coefficient 5(k) of the ex]_nsion (17) contains

G--k--l.

(zx+1) _(2k+i
It results from this also that certain of the coefficients A_,,_,. and oj,,j,, )/79
in the series (i2) are comparable in magnitude to

and that we have coefficients C_,_,._ of the series (]9) that are comFarable to

u k o-k.

The,s, it is quite obvious that the expansions of this Section are s_ii! valid
if all the divisors (1) are of the order of _,_.or larger but that these expan-

sions are illusory as soon as any of these divisors become of the order of
or smaller.

We _rili state that a characteristic planet of the type P + 1 is "regular"
P

if the di%r±sors (I) are sufficiently large so that the first terms of the

series (I_) ar_ (!9) converge sufficiently rapidly but tb_t such a planet is

"singular" in the opposite case.

For singular planets, the quantity A, defined by eq.(6) of Section 19 (by

putting there q = i), approximately satisfies an equation

_to,%o
r oc.o + (r + 8) _,.o.o.,_o = o, (23)

where r and s are two whole numbers. In the expressions for the coefficients

"_c _ and _ol_ 2 [see eq.(3) of Section 19 and the equations given on pp.125and

126),we must introduce

• I l I,',_'=C-p--+r_''w =_p+U.l sp+:i

Let _1%_o_°,,o,%%0_'°'2,etc.,be the values of the coefficients %%o,o, _%o_ . etc.,

calculated with the value xl = (p--_--_)_. By neglecting _ in eq.(23), we /80

can consider the equation

.,,,echo _ (P__ I)_,FI.O,I," ,, "'-@('J') n--sr_,,.o,o + r .. % -_oa,+l,toJ + V!t -_-_-__,

16&
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where @(L2) is a certain pol::nomialof the third degree in A_ with numerical

coefficients. Still neglecting _, we will obtain

J = _+._,.,..,+ d;,, K,;+--..

where A_,r,,and _.r,,are certain numerical constants that depend only on the
three whole numbers p, r, and s.

For singular planets we must have

_=±J, .... +_'.,.,., Yi;+c,,,. . (2&)

where C is an arbitrary constant whose absolute value is not too great.

Evidently, the quantity _r,..has the following expression

IP + q,_ ,eZ.;,:_+l.l.,l
I--_--I _i;-o:i-o --' (25)' ' ,8 ,_ 1" / -I'e,O.O,O

cr else, with the Gylden coefficients y_"_,

_,, _ 6.z{_+___},[3cp+ _)p_.,,+,+ 2;4., �¸�"....- ,, _ 7, / s;4,°+ 4:v;.o " (25')

In the computation of "¢_'_we must use the following ,zaluefor the ratio of the
major axes :

!

The expression for Ap,r.,obviously is more complicated.

Section 23.

In Sections 19 - 22, we gave the theory of the secular variations of char-
acteristic regular planets, by assumiug that the eccentricities and the inclina-
tio_ are comparable in magnitude to /_ or smaller. We encom_tered there singu-

lar planets in the cases in which q _ 3 and also in the case in which q = 1. 8L8_
For q = 2, all planets whose eccent:-icityand inclination are of the order of,
(or smaller) are regular.

*In this Section 23, we will investigate the .olanetsfor which Pl or
both) are comparable in magnitude to _-. For reasons of symmetry, it is con-

venient to consider, at least formally, not _nly Oz and p_ but also the eccen-
tricities e' as quantities of the order of _-.
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We will start from eqs.(33) and (38) of Section 17 which, after introduc-
tion of the independent variable.

t,=:a (i)

can be written as

d(y_ -- x ]-a t) = __ d__ F*_____F_,:. (3)dtt dx_ !t

Evidently, the equations of secular variations, in the theory of ordinary

planets, can be given a similar form [see eqs.(1) and (2) of Section 3].

A considerable ar_logy exists between the exFansions of the function

F* --F.*
I

in the theory of ordinary planets and in the theory of characteristic planets.
In fact, in the first expansion, the quantities

_, fn, mIp mt

!t, _o,o,j,,_

correspond to the quantities /82

in the second expansion.

In addition, the integers i, m, ml, m_, jx, J2 in bhe two expansions satis-
fy the same conditions (ll) of Section 3 and (29) of Section 17.

Finally, to the fundamental relation

FI, o,2, Fl, o,o.zo,o,o,o°+ o,o,o,o_ 0

in the theory of ordinary planets there corresponds, in the theory of charac-
teristic planets of the types

P+q
p (q__2)1

the identical relation

1,,o,_,o+ p,o,o,_ = 0o_o o,o -- •
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Conversely, for characteristic planets of the type

p+l
..... I

P
we have

/,,o,._,o+/,,o.0,_._ O.O, 0 O, 0

According to the above statements, complete correspondence must exist be-
tween the theory of secular variations of ordiuary planets, for which the eccen-
tricities and the inclination are comparable to

v;

and the theory of secular variations of characteristic planets (where q > 2),
for which the eccentricities and the inclination are of the order of

In Sections 3 - 6 of Part I, we expressed the following unknowns for the /83
ordinary planets:

_/,, ,_T, (k = l, 2)
and

'Z - _,-3=

as functions of tl and of six integration constants

• ,, _', _", /, /'=do.

We now return to eqs.(3) and (26) of Section 6. The expansions given in that
Section still depend in a known panner on the eccentricity e' of the orbit of
Jupiter and also on the quantities

,,_.....,. d F,,_,,,,,,., (_.)t_, Fo.o.j,._ . dz* o.oj_j=

The quantities ¢' ¢", and e', are comparable in magnitude to _.

For obtaining the corresponding solution of eqs.(2) and (3), i.e., the
secular _ariations of characteristic planets (assuming q > 2), it is obviously
sufficient to replace everywhere, in the expansions (3) and (26) of Section 6,

the quantities (h) by

V_; tl,_..,__. c/ _---' ,_ ' _:IJ_=_" (5)
• t . v . _-

and to conszder ¢ _ ¢ , and e as beLn£,of the order of _4. All that we have
,(_%+i) (aZ+l) (sk)

stated above on the coefficients [, Aj,,_,, , B_.j,, , C_,I_,,of eqs.(3) and (26)
of Section 6 (cf. pp.36-38 and &&-&5 of Part I) remains valid also for the cor-
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responding coefficients in the theory of the investigated characteristic p]anets
if we everywhere write _ instead of _.

In the expansions of the unknowns _, _', and 71 we have introduced a /8_
divisor which is denoted by 6. For '_dina_y" planets, the expression of 6 can
be _mitten as fol]ows [see eq.(2) of Section 6 and eqs.(1), (2), (3), of Sec-
tion 7]:

_ _ __ 0 ¢2Fi,0,4,0 z_l, 0, 2, 2"I ,2 9 fo FI,°,°,4 I_I, 0°2,2" ''|_. o,o,o,o -}- _o,o,o, oj _ _-_.'- u,o,u,o -{", u,o,O,o_e

FI.I,,,n ,/71,I,1,o._

,_.,o ,.,,2,o,_. _.,._,3,oo,o.,,, 4_,,,o,4,oI °'°'"')V_e"
--2 Fo:o_o+ -_o.o.o.o--*,'u,o.1.o_,_.o,2.o+ _'o,".o.ot_4.-o72;oIl0,O,O,O -JrO, 0,O,O- /

o f I_2, O,2, (I _2, 0, 0 2_ "_._ _r o,o.o,o+ ro, o,i)_o_t_.

So as to make the expansions (3) and (26) of Section 6 valid, we had to
assume that 8 is not too small but comparable in magnitude So _.

For characteristic planets (assuming tl_t q > 2), the corresponding divisor

will have the expression

{ /I, l,l,O Ill, l,l,O/|i

{fl,y..o+/,,_o,__4p,],.,o',° 4/'._,,,o,..o ,, ,._ 2 o,o ,.o ,,-_._6+o.o _o.._:°1I" (_)#0,0

_ 2_,._,o+&o.o.,}_.

To have the resultant expansions be valid, it must be assumed that this quantity
is not too small but comparable to /_.

_:°;_"s by means of theIn Section 18, we have expressed the coefficientJ _,;_

l,iA 1,_ 2

coefficients F__;_ of Section 16. By making use of these expressions, we can

distinguish two cases depending on whether q > 3 or q = 2.

Let us first assume that

_>3.

Then the expression (6) for _ becomes

J_---:_.=-'O,O,O,O -t- O,O,O,Oj,_ _1_ -_,¢-'rO, O,O,O {- -"o,O,O, Oj

./_1, I, I, 0 _1_1,1,1,0, I |
_2|F_,_,_,o F_,.*,,,._ _,_,,,_,oo,o;,.o.. ,,,,,,_.1_'o,o,_,0_t
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The coefficients of ¢'_ and ¢.2 are still negative, according to what we Pad

demonstrated in Section 7. Consequently, the divisor 6 truly wil] be of t_e
order of v_ as long as ¢' or 6" (or both) are comparable in magnitude to _.
Actually, the term in e'2 is relatively small since e', in reality, is compar-
able in magnitude to /_. In addition, it can be demonstrated that the coeffi-
cient of er2 is also always negative. Thus, the characteristic planets, for

which we have q _ 3, are of the "ordinary" type if t_e eccentricity or the in-
clination (or both) are comparable in magnitude to _.

Let us then assume that

q_2.

The expression (6) then becomes (neglecting the term in e'_ which, in rea]ity,
is relatively small)

{ _,',o,,.', oF,,o_2.-" 12 ,_,,..,_.._ }_=-=-- 4,'o,o,o.o + - o.o.o,o+ _,x,- _ _.,-_p.p+_._.o)_ d'

|.wLo, o,4 o _,1o_,_ . 12 ],o,o_. I...... d" (7)-]-,'o.o,o,o+ ,,.,'o:o:o,o+ d':_:' (F-I"P+_°'_)'
ff

16 .,IF1,0._o ,t ,vLo.o.2 _'_Vp +.-.+ _)_zy_ --p,p+_,2.ol + _t'--p,p+2,oo21 i

The coefficients of this express:on are comparable in magnitude to unity. The
coefficients of ¢,2 and _,,2are always negative; the coefficient of/_ has the
same sign as the quantity _ defined by eq.(6) of Section _9.

We state that a characteristic planet of the type P + 2 is "regular" if
F'

the quantity _ of eq.(7) is of the order of d_; we state that the planet is 8_
"singular" if this divisor 6 is of the order of _ or smaller.

In view of this, we can conclude that the characteristic planets of the

type P + 2 are regular if _ is negative; for the singular planets, the quanti-
P

!

ty d is necessarily positive so tzat ¢' or _" m_u_tbe of the order of _4.

These singular planets have a mean absolute motion greater than P + 2 .
P

We would like to make a brief remark on the secular variations of charac-

Leristic planets of the type

?+I

P

while considering the eccentricities and the inc3ination as quantities of the
order of _.
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We will no longer sta_, frc_nthe expansion

(F*--F_*)= _ ,,,_,_,'_'_"..... _ui-l,,,_,_*,._._ _._ Q_*":cos (j_ to*_+ j2,o*,)

(as had been done in Section 19) but from the analogous expansion

_(_'* F*) = _,:"__,,*"_oos (j, _,*+ j_co*)
ti, Tn V_.i-! Cr_z_.._liz,, _ • p

[see eqs.(&) and (28) in Section 17].

In Sections 19 and 22, we expressed the unknowns

(8)
_?,, ,_I (]_= I, 2),

and

' -' " (9)

as functions of tl and of six integration constants

[see eqs.(12), (19), (20), and (21) of Section 22]. The series found there 8_
.includealso, in a known manner, the eccentricity e' as well as the quantities

The quantities ¢' ¢", and e', are comparable in magnitude to _/-_,

To obtain the corresponding solution in<the case in which the eccentrici-
ties and the inclination are comparable to _, it is sufficient to replace, Jn
the mentioned expressions of the unknowns (8) and (9), the quantities (I0) by
the corresponding quantities

and to consider, f_ually, the quantities G' g", and e', as being of the order
of _;.

of iThe ratio of the consecutive terms in the resultant series is of the order._L_,provided that none of the divisors

f,'. + r,". (12)
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becomes too sma]].

Let us now suppose that one of these divisors, for example,

2 sFl,O,_,o 6r ,F:,O,l,o
r,,', + (r + _),,",= o,o,o,o- _,:_7-__ _,,,,,+,,,,o)'---,r (13)

is s_%l]. The expansions of the unknowns (8) and (9) proceed in reality accord-

ing to _:ho] powers of the ratic

We can c=nclude from this that the considered expansions certainly become i31u-

sory if one of the divisors (12), for example a, is of the order of /_ or
smaller.

As in Section 22, we state here that a characteristic planet of the type

__+I is "regular" if the divisors (12) are sufficiently large so that the /88
P

first terms of the mentioned expansions converge sufficiently rapidly but that

such a planet is "singular 'tin the opposite c_se.

For singular planets, the quantity _ defined by eq.(6) of Section 19, dif-

fers only by a quantity of the order of J_ having a value of

2

where the quantity Ap,r,, is also defined by eqs.(25) or (25 t) of Section 22.

In Sections 20 - 23, we integrated the equations of the secular variations

for characteristic and regular minor planets. It is now easy to find, for these

planets, the definite form of the canonical variables xl, Yl, _k , • defined in
Section 2.

In fact, we have first shown that the differences

z, -- _,, y, -- '),, _,,--_,,, 'ik-- _,,

can be expanded in the form of eq.(16) of Section 16. Then, we have shown that
the diflerences

m
can be expanded in the form of eq.(&O) of Section 17. Here, _h_ quantity x1* Js

an arbitrary constant. Finally, we have expressed

as trigonometric functions of the two linear arguments of w' and w". It follows
from this that the unknowns
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i

, =,, y,-(nt+c), _k, vk

can be expanded in trigonometric series in multiples ef the four linear _rgu-

ments with respect to time:

nt -t e, t, w' = t__' t + F', w" = tt _,"t + _".

We do not believe it necessary to give here such a detailed discussion of

, the theory of singular characteristic minor planets. It is necessary to state

only that this problem can be reduced to one degree of freedom and that the
iprinciple_of Part II of this research are applicable, with certain modifica-J

. tions.

q

-.4

.'( }

E.5

:,, j

].72
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i

EESEARCH ON THE MOTION OF MINOR PLANETS **/!

Part IV
r

H.v.Zeipe_

_' The term "critical of the type (p + q):p,,will be used here to denote mino]

_planetsfor which the mean motion differs from the rational number (p + q):P by",
a quantity which i_ comparable in magnitude to the mass _ of Jupiter or smaller,

I

From the viewpoint of practical calculation of the perturbations, the
theory of critical planets offers relatively little interest since such plane- !
toids, actually, occur quite rarely in nature. It is well known from statistics

;t1._tthe large gaps in the distribution of the asteroids are locato.dexactly at t
%he spots where the period of revolution with respect to that of Jupiter would

h

:_ approach the numbers 21.Sl._.73 " In this vicinity, it seems that no planets at!lj

all are present. The most remarkable critical p?%nets are (279) Thule which isI

_theonly one in the vicinity of the commensurability _-_ and (153) Hilda with
3 l

iseveralcompanions near the commensurability +. However, the largest number
r

8 9 II ..., in which the nu:er_of critical planets correspond to the ratios 7,
3'4'Z

_ _tor differs from the denominator oy • number which is larger than h.

i How can these gaps be explained? Can a planet, placed into these lacurme,
m_intain itself there? Can the critical planets be transformed into comets be-

c:-useof the presence of perturbations? Only a rigocous theory could furnish a_

co_plete answer to these interesting questions. However, for a rigorous theory_
_the presently available analytical methods seem insufficient.

': For the time being, one must be satisfied with a formal theoz_.

In what follows, we will make an attempt to base a formal theo_j of the

!criticalplanets on trigonometric and semiconvergent series, such &._we have
lused previously for the theo_r of ordinary or characteristic planets. In this
iPart IV, we will lin_itthe discussion to critical planets of the types (p +

i+q):p, by assuming thatr

q>3.

]*Received 6 June 1917.

i**Vol.13, No.3,
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Among these planets, the following two types must be differentiated :

"singly critical" pla__ets,for which the slo_qy varying portion of the major
axis is no_ close to certain values deper_.enton p and q and on two other inte-
ge_ _ and S; "doubly critical" planets, for which the secular portion of the
_ajor axis approaches such a value.

In the case of singly critical planets, on]y a sing)e small divisor exists.
The problem is thus reduced to a canonical system with only one degree of free-
dom. Therefore, a formal integration is entirely possible. We have found that
the major axis, the eccentricity, and the inclination remain r,ore or less in-

,_riant. Thus, the motion of singly critical planets is stable from the view-
point of formal calculus. It is possible that a libration exists between the

lono_itudeof the node and the longitude of the eccentric vector, as is the case
for ordin_.ryplanets and for characteristic planets. However, the mean longi-
tudes ne'_ertake part In a libration.

The problem of doubly critical planets is characterized by two small li- /3
visors. Consequently, this problem is reduced tc two degrees of freedom; a
formal integration is not possible in complete generality. However, an inte-
gration can be p6rformed under certain conditions which, themselves, are rather
general. In the resultant so!ution, the major axis, the eccentricity, and the

inclination remain more or less invariant such that formal stability is guaran-
teed. Occasionally, there is a libration between the longitude of the node and
mhe longitude cf the eccentric vector. A libration may also exist between these

longitudes and the two mean longitudes or only between the two mean longitudes.
Finally, it my happen that two librations take place zimu3tanp.ously.

To investigate the formal stability of the doub3y critical planets, it is
not necessary that a formal integratlon be possible. By meamq of the first
Jacobi integral, we will demonstrate that the motion of doubly critical planets
is st%ble from the viewpoint of formal calculus, provided t'mt

q>5.

It seems that we can thus explain why there are no gaps in the asteroid belt,
for q_ 5-

Frequently, the motion is stable also for q = 3 or _. However, for these
walues of q it has never been possible to establish stability for all values of

the integration parameters. On the other hand, it l_s never been possible to
demonstrate the existence of instability. Nevertheless, it is of interest that
the ring of minor planets al_ys shows gaps wherever the n._.berq is equal to 3
or _.

Section 2/_.

To study the motion of critical minor planets, it is convenient to start
from the cal_onicalsystem (22) of Section 16, which is written as follows:

1%
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d_:, d $" db d $"

Q)

---t •

dt di;k dt d_k

The c,haracteristic funcT.ion can be expanded in the form of

=F, + .__,+ :,,F_+ ..-.

Here, we have specifically

P-+q-x,. (2)

In additior, by putting

.-'k= {'t,cos,_, '_-= _k sin,(.,. _/_= I,2),

the expansions of Fi are written as

The coe ?fi_ien_s "._...../_,p_,_p @�|���Xce._hain f_ctions of xt defined already

in S_ction 16. In the stm. (3), the exponents m, m,, .m_ and the indices _, Jl,

j2 all take integral values that satisfy the conditions

Ii.l_<__m,,' 1i,155m.= _._,

I,q + i, + i, I_<._<__ + _i--2, *(&)

from which it follows that

I,ql<<_ + m,+ ,., + 2i--=. (5)

In the theory of critical minor planets, a differentiation must be made be-

tween the _mrious types characterized by the value of the whole n'.,mberq.

This Part IV of our research wili be. de;Dted to th8 tyF_s ,n which

_>3.

* By the notation a _ b, we mean that b - a is an even not.negative integer.
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In accordance with eqs.(3), (h), and (5) we _rilithen b_vez up to terms• * t

of the second degree incl., v_th respect to the quantities Px, 0_, e , and J_,

-_s Ft'°'°'° --1.o._o., Fl.o.o. _ -to.o.o.o "}- Jfo.o.o.o.oz 4- o.o.o.ovt

2F1 I 1,o£F. ]pl.2,0, O_t|+ o:o:J,oe, eos(_, + ,o,o,_,_ + "",

:lF_ .F _°'° '_---. O.o.o.0 -r """.

In the types in which q z 3, it is easy to redtme the system (i" to the
normal form discussed in Section 1. It is sufficient to introduce new variables

z, ,:',_"; h, _*,_"
by pitting

_1

_,= C,,_", _,,= _.,,_". (6)

Here, the numerical constants '_ and c have the following expressions:

(7)
.Fi,1,I 0,- • L-d,O,_O.-- ._ _ _.o.£,o_x,): _o.o,o,o_z,).

We will here consider the eccentricLty e' of the orbit of Jupiter as being
of the order of Y_ and thus set

-- ,'==v.;,_,. (_)

The characteristic function F, expressed by the new variables and expanded

in mowers of Y_, can then be given the following form.:

. . r,i, O,O,O,-

F = 2z;1 + 7)P+q_:, -.- .- -"o,o,o,o'z_J "t-!l_H. (9)

The function H, defined in this manner, is given by an expansion /6

H = H(o)+ I?;'He:,) + t_H(') + :_',,Hem+ .... (IO)

By putting, in addition,

176
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tI = tit,

the new variables -#illsatisfy the canonical system

d: dH dy dH
dr, dy dt_ dz

d_' dH d,,: dH
dr, =_" dr,=-a_" (1_)

d_" dH d,:" = dH
i_t,-=d,i" dr. de_"

It is easy to write the expression for _o) _king use of the notations

j z,l,O,O,0f_. ,

3 z_+ ....... + const.,_.c O, O, 0,0 ,.s,i/Zh(z) 2_1 dx, (12)
-_ , ,=.1.o.2.o, .

we actually obtain

'_ (_,. ,. ,."H(°)= h(z)--_- + 'l ")--- 2 (_'''' + '2"')- (13)

Thus, the system (ii) actually has the normal form already treated in Sec-
tion I.

The numerical quantities _ ar:¢_" satisfy the relation

;: + _" _ 6.

'de will give the general exp.ression of the functions _ ") that appear in

the expansion (]0). For this purpose, we will set

_ COS{o', _ Sill{0F,

"': ,/' _" sin to", (i_)

.andconsider the sum.

x_, d' ]r_/,rn,ml, m"

I(": = "_'_x,' r,p,-,(r +_).._,..i"(x,)
(15)

Zs
• _ m rMl if/n,,

steoe e cos(_pit+j, cd +j"w"),

m" _ Jt s J"where the indices is ss m, m_, , , run through all integral values
that satisfy the conditions
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i>_1, s>O, m_.O, m,>O, rn"_>O,

1 _ m")i + s + 2(m + m, + --2_m,

lJ,l<<m,, If'l_<._<_" = ,,_,, (16)
i,q + J,.+f'l<<_ + _-2.

By virtue cf eqs.(i/_),the quantity f(') will be a certain function f(*)(_', _"
_'_ _") of the variables _', _", _-, _".

Since the substitution (6) as well a_ eq.(9) are given, it is obvious that
we will have, in the expansion (lO),

(-Dkk+3 k_ /(k)(_:e°H(k)=-_ ---d?_ z ---+ + _'._",_',,f),

(k- O, I, 2.... ) (17])
H(_q)= I('+')(_e,+ ,_',_",_',_"). ',

If we wish to substitute _ceo+ E' for _' in the ftmction f(=)(_', _", _' ,
_"), it is first necessary to form.the successive derivatives of the function

,r_._')---o", cos(h_'+ a)

.., with respect to $' . (Here, we denoted by a an arbit_rT quantity independent
of O' and _' .)

--- First, we have the differential formulas

• d ,d . ,d
" ae'--= ¢os,od_ + am,__-_,,

" d ,d ,d
" ¢'-d_' = -" sin (o d__+ cos ,._d_"

from which the inverse formula

D=.d. d , dd_' "-=cos,,/ , -- sin(o ¢'h_--_"

.isobtained.

By applying successively this fcrmula and by putting, for abbreviation,

m,+ j, m__,,_::b

!78
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it is easily found t.hat

The general law here is manifest. We can set

d",-"' (" cos (i, c_'+ a) _,,,m, ,., + a). (18)(m,-- m')' d_'-"' = _'ci''i e cos (j'_'i'

In this s_=, the integer j' takes all walues for which

f--j, + m, - m' -_-O,2, 4.... 2{m, - ,n'). (3-9

It is easy _ demonstrate that

.... = °,'
q"f = _J_ _t_l (,,__,),_,,(#_. _#j..,.,_,,. (20

with the notations

m' + f _, ,7_'-- f2 2 (21}

Now, we can write eqs.(17) in the form of

H,*,---(----L)-__-+3-"'
2 x_[-+-4z

+ _ "" _.,._,,,., ,,..,, f,_.,,)."'_'._" e e cos(_p._+ j%' + (22

H_+t,",'_" 'm'e,,,_,'cos (*p_/+ j'(o' + j"(d').

in view of this, eqs, (15), (17), (3.8),and (20) show tbmt

i , _ It" I_ml .- .: H,._,,_,,=_ _, '"-'_'+'"_'_(_') _1_¢!.': _-,-,,,'. ._ (2Y,

]79
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,Here,we used the notations

m'-a'-,'.Y, f =,"--it',
m"= (_"+ f', f' =-e.."- f .

i

Finally, in accordance with the relations "16) and (19), the indices i, s, m, )
_x, _z +_ke all values that satisfy the c,,nditions i

l

i>.l, 8Z'O, m_>.O, a,>a', it,>_' }

I,q + ,,,-,_, + ""- fl <<_ + 2i-2 (2_)
=2m+2--(a,+_.+_"+f}--2s-

We will demonstrate that the indices m' , m", _, j', j" that appear in the

*_ ,polynomials (23) satisfy the conditions
2"

Ifl<<.e, If'l<<,,, " !- 2 . _ -- _ even, l

:_ - I,q+ J'+ f'l +m'+ m"<5<2m+ 2--2a <_<<2m+ 2, (2-el

:. I,ql<.._.<2m + 2--2S << 2m.+ 2.

.:_ The two first of these relations are eviden+ he others are true since, on the
,) One hand,

_ _ i,q + a'-,_' +,,"-,_'!
=l,q + _,-,_, + _"-f-(_,-_') + (#,- ¢'_',

_, 5.5_I-1+ a,--t_',+ d'--f'l + a,--d +/_,--/t'
< < 2m + 2 -- (a' +//' + a" + f') -- 2s,

_- '_nd,on the other hand,

,, l,ql =l_q+ =,-_, + ,,"- tr- (,_,- ts,)- (,,"- t)")l
<<I,_+ _,-#, + _"--fl + I=,-#, I+ I_"-#"1
<< I*q+ c,,--it, + a"-- fl + _,,+ #, + a" + #"

<< 2m + 2--2s.

J' j" that satisfy- Below, we will give all values of the indices m' , m", ,

_- itheconditions

" IJ'l<<.m', Ii"l <'<m"- ,,_,

as well as the relation appearing at the head of each of the following Tab_les,
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Table 1: ]f+f'l+m'+m"=O.

m' m" f _"
0 0 0 0

Table 2: [j' + f'] + m' + m"= 2,

m' m" f f'
2 0 0 0

4

1 0 +1 0
.2

0 2 ,0 0

Table 3: [f + j" I + m' -I-m" = 4.

m' m" _/' f'

4 0 0 0

3 0 4.1 0

,_ 2 0 4-2 0
2 2 0 0

- 2 2 -4-2 _2

" I 2 4-1 0

1 2 4.1 :]:2

0 2 0 4-2

0 4 O. 0

-, Table 4: [i' + J"l + m' + ra"= 6.

d m' mr' 9"I _"

6 0 0 0

" 5 0 4-1 0

4 0 +2 0

.: 3 0 4.3 0
4 2 0 0

- 4 2 4-2 :F2

" 3 2 4.3 =1:2

_' 3 2 4-1 :1:2

3 2 4-1 C

2 2 4-2 0

2 2 0 4-2

_' 1 2 4-1 4-2
' 2 4 0 0

2 4 4-2 :F2

., 1 4. +1 0
_ 1 4 4"1 :]:2

"" 0 4 0 4-2
'" 0 6 0 0
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Table 5:13 +/+ j"l+ m' + _"=3. ,_

mr m" j, j,

' 3 0 --3 0

2 0 --2 0

I 0 _I 0

0 0 0 0

1 2 --1 --2

0 2 0 --2

Table 6: 13+j'+J"l+m'+m"_5"

_' ,,," t 7"'
<

5 0 --3 0

4 0 --4 0

_ 4 0 --2 0

3 0 --I 0

:' 2 0 0 0

- 1 0 1 O.
2_

3 2 _3 0

_, 2 2 --2 0

:_" 2 2 0 _2

2 2 --2 --2

:._ I 2 --I 0
_, I 2 +1 --2
_: 0 2 0 0

=': I 4 --I --2

_ I "4 + I --4
"i

0 4 0 --4

.,_ 0 4 0 --2

": Table 7:]4 + j' + J"l + m' + m"= 4.

m' m" _' _"

., 4 0 --4 0

3 0 --3 0

,_ 2 0 --2 0

4 I 0 --I 0

0 0 0 0

2 2 --2 --2
i ,

I 2 --I --2

,, " 0 2 0 --2

,: 0 4 0 --4
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Table 8: 14+j'+f'l m,,-ffi6.

m' m" j' j"

6 0 _4 0

5 0 _5 0

5 0 --3 0

4 0 --2 0

3 0 --l 0

2 0 0 0

1 0 +1 0

4 2 --4 0

4 2 --2 _2

3 2 --3 --2

3 2 --3 0

3 2 --I _2

2 2 _2 0

2 2 0 _2

:, 1 2 "-I 0

" 1 2 +I _2

0 2 0 0

2 4 --2 _2

2 4 0 _4

,. 1 4 --1 _4

I 4 --I _2

I 4 +1 --4

0 6 0 _4
E

" Table 9: I5+i'+f'l+m'+m"=5.

•., m' m" f j"

' 5 *0 _5 0

4 0 --4 0

,,, 3 0 --3 0

2 0 --2 0

I 0 --I 0

0 0 0 0

3 _ --3 --2

,, 2 2 --2 _2
1 2 _1 --2

,, 0 2 0 --2

0 4 0 --4
!
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Table 10: 16+j'+]"l m"=6.

m' m" f f'
6 0 --6 0

5 0 --5 0

4 0 _4 0

3 0 --3 0

2 0 --2 0

I 0 _I 0

_ 0 0 0 0

: 4 2 _4 _2

3 2 _3 --2

2 2 _2 _2

,- 1 2 _1 --2

; 2 4 --2 _4

1 4 --1 --4

' 0 4 0 --4

,_ 0 6 0 --6 ! .'

::, Section 25.

: To further reduce the canonical system (ii) of Section 2/_, we will apply

th. method given in Section 1.

" i The integration divisors, resulting from this method, obviously are given
_: iby the formula

,: ,p_(_)+ (f- f')_',
,,, 'where we have put

,_ _(z)= dh(z) (:)
dz

J
k

If b = 0 and J' ffi j", the corresponding divisors will cancel out. _I
E

Let, now, _ be an arbitrary positive whole number and let _ be an arbitrar_
integer having no factor in common with _. Let us denote by

[

ithe root of the equation linear in z

,' ap_,(z)+ #_'- O. [
,I

': iSince the expressions of h(z) and _ are given [see eqs.(12) of Section 2hi, the !

18h i:
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numerical value of za_ can be calculated by means of the formu]_

I

-' d 1_o,p= - 3-/_, o.o,o,o_,) �p;-.o,o,o,o(_,) • (2],

It is necessary to differentiate between singly critical p_anets for which!
the initial value of z is not close to a value za_ and doubly critical planets i
of the case (_, B) for which the initial value of z - _ is s_fficiently smalli

In this Section, we will roughly sketch the theory of singly critical
planets. In this case, we have only a single small divisor, namely, the one
that corresponds to _ = 0 and j' = j". M_king use of the method g_ven in Sec-

tion l, the considered canonical system can be reduced to another s rstem with
one degree of freedom.

To effect this reduction, we must start from tne characteristic /i6
lh

_ as well as from the unkno;m function

_- H, (=, _=',_"; _', _")

: and then use these for fo_g the equation of partial derivatives

_';_"d,/"dSdS dSS.y, ,/,_,,= H. z,--=',g";-,_e"d_r,/• (31

:Thefunctions H, H., and S are expanded in the form of

H = tl (o)+ t_'1,HC',',)+ ,.H_ + .'/=HP;,)+ tt,H(_ + ...,
|

H.--H_ + ,,H_:_ + r,'[l_:_+ ..._ (;_)

S = SI°_+ ,w'_8_'!=_+ ,.So_+ p,l,_,;_ + !:,8_'_)+ .... i
• =

_' ;Theseseries must be introduced into eq. (3), after which the expansions of the ii
_'_ it_._members in powers of _s must be compared.

By putting

H_ = H_°l= l,(z)--2 + '/')---_(_'''+ _''')'
,,, (5

S'°_= z# + _¢'_'+ _",/',8 _ 8 _°_+ ,%,

:eq.(3)will be satisziec for _ = O.
i

After this, eq.(3) can be writtin in the fol_o_ing form:

185
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I ds, ,, ds,i (6)
= It, _z, _', r,:. _, -t ->.r ', + •

By here comparLng £he coefficients of _H_ in the expansions of the two members,

we obtain the equation /17

d${";_ ddSt_I- -=-L.,_ -d_ •

(The sign E" _t front of a given term desic-ates a sum of the t_ terms, of

which the second is obtained from the term _ritten by priming the letters twice
• J._3_ns__d of only once.) It is convenient to introduce the varJabl_s p' p", w'• 9

and m" defined by eqs.(l_) of Section 2/_. To abbreviate the notations, we will
_iso make use of the symbolic notation

D = ,.(z)_, + _ d-_+ do,"" (7)

In view of this, the equation which _ields S(_) is written simply

D S_':,'= rl.t_ (8)

In the function H(_) the index m has the value i The last of the rela-• 9."

tions in the system (25) of Section 2/__hen demcnstrates that

Consequently, we will have

_-- H':_ = O, _f9>_4,

and, in acc_rdane_ with the second formula of the system (22) of Section 2&,

,:=m._" ,, "m" #"_")H_'I:_=2_H,,s.i, _ _ cos(pg+f,_'+ (9)
ffq = 3.

F_r q = 3, the above sum includes six terms tha_ correspond to the six combina-
tion_ giver ;n Table 5 cf Section 9/+.

It _m_-d finally be mentioned ti_t the function _) does not depend on

;._ " 4able z. This results from the last oi' the relations in _he system (25)

of Section 2_, which actually shows that the exponent s assumes exclusively the
value zero in the expression of tilecoefficients l_,;'p"' given by eq.(23) of
_ectJ.on 2A. ,
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Now, eq.(8) yields

Sc::__ o, _q h _, (lO)

and

= "_p,'tz) + tj'--Y')," sin (p# + _'_o'+ j",o"),

_q= 3. (!1)

A comparison of "_he coefficients of _ in the two members of eq. (6) will
yield the equation

DS c' = H_"--H_), (12)

where

_,,dH'-':'_d,_.(::') 3 idS(';'_I'

•,,.,_.'lFs,?,_l, i_s,',,,t'l (13)

Now, let f be an arbitrary function periodic with respect to py, m' , and _"
with the period 2n and expandable in a trigonometric series in arguments of the
form _ + J' _' + j"w". In this Section: we will denote by

[/1

the ensemble of the terms of f where

t = O. j' = j',.

In view of this, it is sufficient to put, in eq.(12),

H_'= [_c,,]

so as to finally obtain the function S(x) withou_ small divisors.

Evidently, we can continue in this manner and successively determine the
various terms of the expansions (&).

It is easy to demonstrate that, in all the arguments

ip,)+ j'co'+ j"z"

which appear in the trigonometric and finite expansion_ of the functions

187
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the number '_qis always of the same parity as 2m, exactly as had been the case
for the various arguments of the function _')

Because of this, we have always been able to put

H'_'_-__ H_"J:=H_._..... 0.

From this it also follows that

S_:;_==8_;,_----Se:'J..... O, I *f9 is eve..

We will e_m_ne the function _.i) in more detail.

If

q>_4,

we will have

nt ea n it is sufficient to retain, in _ , allhave b = 0, j' = j". In accordance with
Tables i, 2, and 3 of Section 2J+,this will yield the following expression:

]'{(I, ,-.1 4,0 '4 lrj_,%2J._.2 ral, o,,I ..=_o:c.oe +,.,o,o.o¢ ¢ +*,o.o.o¢"

_,,0 ,, _,0,_ .. =,,_o (1/_)

Then. the function _1) is a polynomial of the second degree with res_ct to p'a
and p"_; this polynomial does not depend on the angle _' �w".

Let us now see what will happen if /20

q=3.

In all arguments of the various terms of the functious (9) and (ll) and of their
derivatives, we will then have

--3<j' +_"<O,

Thi_ is demonstrated by the six combinations in Table 5 Or" Section 2/_. Conse- '

quentiy, _ithe armanents independent of y in the tri.go,nometric expansion of th_function _r) defined bv eq.(13), the indices j and j" satisfy the con-i
dition

If+i"l<_.
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Thus, in the arguments of the function H_ ) - [_I) ] where _ = 0 and j' = j" =
= even, we will have

I.gJ"l<__3,
whence

,i'--f' O.

In addition, we have seen above tb_t the function [H(I) ] is indepel._ient.of w'

and w". Conseouently, if q = 3, the function _.i) will also be a polynomial
in o'e and p'_. However, this polynomial is now obviously of the third degree•

We will also investigate the function '_a)

So as not t_o complicate the discussion excessively, we will _=vestigate in
detail only the types in which

9>4.

Then, the equation which yields _J) and S(s) can be written as follows :

O8",= #(:_--H_J,

where we have _ade use of the notation

/21
am.as., v,,a_!t,?a_S,,,3 is., i,

#,_.,= m,, + --d-_---aij- + _ a_' d,/ + _z_ _-d-_-v!

x;,,,"JldS"'l' lam'h'l v,,am..,as.," (15)
+ ,, 2 I_d__-I- _-d7,'-!I-,_, d_

The sought expression for _ a) wil! then be

s:_= [R_,].

The te_m%s of the function [.hi z)] corres_0ond to those of the combinations
@ -- .

given in Tables 1 - & of Section 2/_, where j = j . in all these combinations,
e) t ::, nz

we have 3 = 3 = O. Thus, the function [_ ] is a polynomial in 0 and p ",

independent of u" + to". The polynomial in question, obviously, is of the third

degree with respect to p,e and p'_.

d_ I)
In the terms of the derivative --, we will have, as in the part of

dz

H(I) that depends on z,

. 14,1<<_,-

from which it follows that _ = O. This derivative thus is independent of _.

On the other hand, all argument_, of the function dS(i)
dy depend on y. Conso-

lS9
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quently, we wi?.ihave

dR") dS, nl

To go further, we assume first that

q>5.

We state that the functions _i) and S(I) are then independent of y since we
ha _" I. I

ve _nere i_o, << & from which it follo_ that c = O. A!] termq of the func-

tions _l), _._)_-and S(I) then correspond to the combinations of the indices
f II "f "W
m , m , 3 , 3 entered in Tables 1 - 3 of Section 2A. In the derivatives of
these functions with respect to _' , Ti', 4", _", we will have

I/+i"]<_.

The quantity 'j' + . 'I = 2 can occur only in the derivatives of terms that

correspond to the combinations given on lines 2f 6, and 7 _f Table 3. re-
taining only the terms of the derivatives of _ ) and of S 1) where [j'_++j"[ =.

= 2, it is easy to find that the terra of the function _J) where we would have
"[J' + j"[ = A, will cancel out. ' 'L

_= Thus, above q a 5, the f_nction _:) is a polynomial in p'_ and _"_ which,
incidentally, is of the third degree.

We will assume that

9=4,

then H(1) and S(x) will also contain terms that depend on _', To obtain, in
[_2) ], terms that depend on the argument 2_' + 2w", it is sufficient - in ac-
cordance with the above statements - to retain, in _ i) and S(I) , only the
terms in which

,=1, I' + i'+ i"l +,n' + m"= 4.

These terms correapond to the combinations given in Table 7 of Section 2/_. In
_the corresponding terms of the derivatives of _l) and S(I), with respect to
any one of the variables _' , _' , 4", _", we will have

t=_l, --3<.j'+j"<O.

'In the squares and the two-to-two products of these derivatives, we will thus
"! -- "It

:have lJ' + J"[ _ 3 for each argument in which _ = 0 and, consequently, 3 - J
'= 0 in any argument in which _ = 0 and j' = j" --even.

{a) which depend on the arguLThus, we see that the terms of the function H. ,
ment 2_' + 2_", all are contained in the function
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3rtds,,,i,l

To obtain these terms, it is sufficient - in accordance with Table 7 of Sec-
tion 2& - to retain, in the derivative of S(1) , with respect to y only the terms

2 I ¢' " .... 2 r,l,n.O

i;(z-)S,: =,.-,__._-_ -cos (Pg-- 2,d-- 2<¢')+ ,;(:j -,.o.ocospy.

Thus, for the types in which q = b,,we will h_ve /23

ti! _.2 y#l.O,C _i t,o
1t2-- - ,_i' _, o_.,l, o(_ (I -eos(2id+lcd') + p(#,,, #,,I),_:(v(z))' '- -- '"

where F(p'_, .o's) is a polynomial of the fourth degree in n'_ and _'_ which,
incidentally, is independent of _' and (,:".

In studying the function _.i), we are limited,to types in which q m &. If
q = 3, the discussion _'uld become much more complicated. Nevertheless, by
canceling the coefficients

HI,--. & o F/i._ 1, 2 lr,I;l I, O
l,--_0, **;,--1, --2 and/11, -1,0

- in the expression (9) for the function I_ _2_ _), we found that the function
sctually contains a term _-._ththe argm:ent _x' + 2e".

Let us now assume that the functi(ns

8(z, _'., _"; _#,r/, ,")andH.(z,. _..,_' ._"', 17', ,")

are known. Starting from the function

s(_,, _,,., ,, _, _, _"l (16)

- we can form the canonical transformation

d,g dS

z = _I)' _#*= dz,

_, d8 d8" (17)-d-_,, ,_',= d_,'
,', d8 d8

_hich, because of eqs.(5), can be also written as
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1965019998-192



d (S -- 8_°_) d (S -- 8(o_)

d (8 -- 8co_) d (8 -- 8co_)

d (8 -- 8co)) d (8 -- 8(°)),
_"-" _", ..... /_i, -, '/'*--'/' = d_",

" It is easy to solve these equations and to express the variables z, , ; _,
_' _. -,, as functions of the variables z., _., _; y_, _'.,Ti_. Since the func-
tion (16) satisfies the equation of partial derivatives obtained from eq. (3) by

g' _", it is obvious that we will" _ instead of z, ,writing there simply z., ...,
obtain

lt(z._'._"; _. _'.,;")= H,(z,. E' " ". ,, _E,, 1/,, _",).

:-,provided that, in the first term, the quantities z, g' , _"; Y, ._', 0" are re-
. placed by their expressions as functions of the variables z., _., _".;y., _, _.

Consequently, in view of the canonical transformation (17), the canonical

--'system(II) of Section 21 will be replaced by the equations

dz-_*: 0 dg, dH,
• dr, ' dr, (19)

: d_', 3H, dr.', dH, '.
dr, = " ,,-r-- '

d_", dH, .I,,, dH. (20)

.. The q_ntits_ z_ is.reduced to a constant, since the function H. does not deT_nd: _onthe argt_,en_.y. _

' However, it is easy to obta_u a further simplification and to redu,'.ethe i
caronical system formed by the four equations (_0) to another canonical 3ystem

, which has only one degree of freedom. Fo_ this purpose, we set

_', --=#', cos _d,. _', = .o', sin _',. I.(

. _", = #", cos td',. _", : ¢", sin _./',. (21_

!Thecharacteristic function H_ of the system (20) deoends on _. and '"" only in

_theco_,bination_',+ _. Consequently, instead of tilevariables _*

1_2

..... , .... ~ ........... . ..........
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_* s yt

t_tf T rt

it is convenient to introduce first

-_;_, ,__,
i fl_

and next

The two transformations are canonica3. Thus, we ultimately arrive at the follow-

ing final equations :
l

-" z, = const, d_'. dH,, (22)
' ' d_. dz, '

z, -----const. , d_./_ = dH,
-at, d}x.' (23)

" d -_O'* dH. d_.,, dH,
'- -)i.- =d_. ' at, d_e' , " (2_)

After integration of the canonical system (2_), which has only one degree
of freedom, we can obtain the ar._ments y. and _ as functions of t_ by quadra-
tures, over the intermediary of eqs.(22) and (23).

Let us recall that the characteristic function H. is given by the expansion
h

t1, = H[) + t,H_) + !,'-tt_) + ....

Above; we had already discussed the character of the three first ter_._.

By making use of the definite variables, we obviously will have

It_ : h(z,)-- _ _,'_._= ".onst.

(1) 2 _'hichis of the second degree ifThe function H. is a polynomial in p.,
.' {q'_L and of the third degree if q = 3.

If q > 5, the function H(._) is independent of _. and, in addition, is a

* !F_i/nomialof the third degree in #_. Conversely, for the types in which q ffi3

_, lot&, the function H__) is a linear function in cos _. _±th coefficients that
iarepolynomials in p..
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In general, the functions H_")_- are ool._nomialsin p2 and _.; they areA _ 4 _ L

rational with respect to the constant z. and are periodic with respect to tile p
argument 2m. with the period 2_. i

integration of the canonical system (24) is very easy since the derivative _

dH_., (25i

i3 not small for the initial value of _ p_. Then, we can again apply the method
' given in Section _ and raduce the problem to zero degrees of freedom.

If, at the origin of t_me, the derivative (25) is small while the second
derivati_e

d' H_' (26)

l

is compa_._bl_ in _gnitude to 'unity, we can proceed more or less in the same
:. mnner as that given in Sections 10 - 12 and integrate the system (2/.) by means

of elliptic or trigonometric functions, depending on the various situations
:- .that _Sght ,.'c¢_r.

: _ The derivatives (25) and (26) cannot become small simultaneously except inl
:' the case in which q = 3. An application of the Jacobi integration method,

- _basedon principles similar to those given in Section lO, will then lead to a
:- differential equation in S which is of the third degree with respect to the
>;

dS

", :quantityd_.. In this case, the elliptic functions no longer are sufficient
I

_ .'forintegrating the sysLem (2/_). Nevertheless, since this case is rather
....special, we do not believe it necessary to discuss it in further detail.

. °

i In addition, it is sufficient to make a few general remarks on the nature
' 9f the solution of eqs.(22), (23), and (2_).

Let us primarily consider the first Jacobi integral

H, = h.

iBecauseof this integral, p_,is a certa{n periodic function of w., with the

!period_. Since _.oy is constant and since _:) does not depend on w., it is
obvious that p_ remains more or less constant. It is also evident that

10. c_s w. and _p.sin _. are still certain finite and periodic functions with
Irespect to time, having a period H which i._extremely long and at least compar-
'fableto _-_. The period _ is a certain function of the constant h (and of the

L ipo.r_mctcrs3. and x.), appearing in the Jacobi integral.

i if the value of the deriv_tlve (25_, which is more or less constant, is '

!nottoo small, then the argument w. will posse_s a mean motion such that _. in-I
creases (or decreases) by 2_ as soun as t incra_ses by the period H. For certain
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values of hi the period Iibecomes infinitely large. In addition, if the value

of h is located between certain limits, the mean velocity of the argument '_.
becomes zero; in this case, there will be librat_on and the argument w. will be
a per_*odicfunction which oscillates between two ext_,emevalues.

Let us now return to the variables 0_.= P_ and p_ _= _/P,- ,. Evidently,
these functions have the period E and are"more or less constant.

Let us now study the ar_ments y., _'u,and _", considered as functions of. _° . °

time. After having expressed H. as a functlon of tflevarzables

0 '_ ,

we will have

do, dlt, d(o', dIt. d(o", dH,
_ I t -_-:- '2" '

" _ii these derivatives are periodic functions of t, with the period _. Let us
denote by

-- /(r, 1'_", t(W_ (27i

_' .themean values of these periodic functions. In this case, the quantities (27)
Bre the mean motions of the arguments
t

"' :B,7 neglecting _, we will have

,,_ J,(_,) +...,

_' _ _' +'"' (28

s/' == _" +....

We can then pass to the functions _, _; _, _ which are given by
'_ eqs.(21). These functions are obviouslyTinite and Slowly variable.

Let us now return to the relations (18). These can be solved for the un-
knowns z, g' ; _', _" y, , _" in accordance with the Lagrange method, generalized

_o three variables. After performing this solution, we replace there z., _,

_"" "- _' _" by their expressions as fungtions of t. We thus find that the i
_ifferences z - z., _ - _., _ - _., y - _., .. - _., _" - _ are small oscil-,
_mting functions with slow variations In the types in which q all these

'" differences are of the order of _s. If, conversely, q _ &, the differences

_'- C.,_"-_; _7#, _,_%, _,,__ areoftheo_erof_ whereasz- z.
_s of the order of _"-. From this, we can conclude that t.bearguments y,m.',!
and _" [where the t_ latter are defined by eqs_(]/_)of Section 23.]have the
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quantities (27) as mean i_tions. !

Finally, we must pass through the substitution (6) of Section 24, the /29
formulz (36) of Section 17, and the transfol_a'?ion (13) of Section 16 to arrive

_ltimately at expressions for the primary variables xl, _i, _; Yl, _, _ de-
fined in Section 2. We note here specifically that the differences x: - xx,

_k - _k ; Y_ - Yl, _ - _, are small oscillating functions being of the order
of _ and possessing rapid variations.

: The obtained results can b_ combined in the following formulas, which can
Serve also for classifying the various inequalities in the theory of singly
critical planets:

z, =zt + (x,--:i:,)=_'t + tiz + (xj--'2,)

_ = (_, + ,_,z,) + _,(z--z,) + (z,- _,),

y, =#, + (y _y,)=y + v+____q:+ (u,--_,)P

"(/,,+ t)+ly-;,,I+
/

p
(27)

:,= _,+ (:,--_,) = (_e'+Vt-/:',)+ v_%(:'--:',)+ ff,--_,),
-+

.' ,;,= ;j,+ (,_,-_,,)= V_7,/,+ v_,,(_,-,i,,)+ (,l,-/_,):

.+.=$, + (,_,-_,) = v_,,_,,.+ v_(,_',-_,,.)+ (L-_,),

:,, ,_,=#, + (,_,-_,)--=v'_,,/,.+ V_,(,/,_,I..)+ (.,___,).

" The inequalities of each element are thus subdivided into three groups. The

inequalities of each group are sufficiently well characterized by our above
'+ _iscussions •

: In accordance _:iththe definition of singly critical planets, the value of

" _ and thus also the value of the parameter z., must avoid the vicinity of certain
!numericalvalues z_. We will express th_s condit:on in a different manner, i

"_ !Let 1

1 _, _r_l and --#t_" :,

ibe the mean motions of th_ mean longitude Ya of the asteroid, of the mean iongi_
rude y_ = t of Jupiter, and of the longitud_ _ = -_ of the ascending node _0
!of the asteroid. For critical planets, the quantity

, + _n-- (:p+ _/)n'
P

'isof the order of +. For singly critical planets, there is no linear expres-

isionwith integral coefficients _ and _ and of the form

, ,_{_,,--(p+ _).-.'}--_i_,,,,,
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which would be sma]_ with respect to p. (We assume that the values of s and
are not.too large.)

iSection 26.

in determining, in the precedin,_Section, the various terms of the func-

tion S, we encountered in each integration oivisors of the form of

' t'"(=) + (J'-- i")-'",

where the whole numbers _ ami j' - j" a_ .notboth zero. On terminating the

series yielding S and 11.at a certain term, the introduced divisors will be
finite in number and correspond t_ certain limited values of the numbers _ an::

'_ "! j l!3 - . We have assumed that these divisors, of finite number, are sufficient_
ly las-geso that the first te_s of the series converge sufficiently rapidly.

: Let us now see wlder what conditions the serie_ (_) of Section 25 no lo,:ge_
:areapplicable. This will hap_mn as soon as any one of the divisors becomes to_

" small. Let us assume that the value of p is suffi_-ientlysmall so that two
divisors will not become too small simultaneously. In view of thij, let

:, _ = ap,'(z) + #_'------- (z -- ,.;.,p) (1

• ibe the unique small divisor. It is now necessary to find the greatest negative
!mowerof v in the various terms of the series (1) of Section 25.

Let us first investigate the types in which

_' ', Primarily, we assume that tL_ function S(f12) is the first tha',is increas_
_ by the integration. In view of eq.(.1) of the preceding qection for S(_) it
_ is obvious that this will happen only if

'" a=l, --3<_fl_+2. (2

' t , -1

,! fin the expression for S, 1/_) the enlarged term includes v . Equation (12) of

,, !Section 25. which gives H_1)" and S(1) , ±ndicates,_hat _*,!:,"-_ri.nc±1_l terms of
_.I) include q-s and that the largest terms of S_ _ contain ? . We have not
_¢rittenout the equation which determines the f_mction S(a_) . l:owever,it is
:obvious that the most expanded _rt_ of the second member ",fthis equation are

Iproduetsof a derivative of S(_) and a _rivative of S(_). The highest nega-
itive power of v in the expression for S"'_';thus will be v-s . The general law

$ iisobvious. Under the conditions in q_,estionhere, the expansions (_) of Sec-
itien25 progress, in reality, in powers of the quantity

__o

(z -- i_, p)'
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. 2_ _ 7 :' _ z

,_._[-_se_,_:,1,t_ _,_,_thatth_-_n di_,i_ap'_sforth,f_,tti_" ::
" 2-_,in;_he fU_J_-n 3_l) . To define:the tonditzom_ c_._er _hieh this might: happen, _-

5

-_ ' ¢.<_ o:.S_J. : t'_l, -- 3_<_j'-- + -.° :

l_-_'Coz_eq_el_c]_, _n the arguments of the p_xlucts o£ th._se pa_se derivatives,

-_---_¢e _2_ have either . :, .

"_:-" - ,--0.--_<:-f<:+_, _ (_')

'--5 . ,or : - _ -- :

__ j : .>::" -_.: _=2. --6<_f;--j'<_+i. _ (5

---"="__ _di_ " i_,I -3 of-Section _J_.showthat " i ::,_. ion,.Tab the indices of the argumeSs-."-,_.bf the function.}_* also satisfy the eonditions (_). Thus, the arK_ments of j

::,;_Ith__f_n_o,_3__',.-as_*!,_peha_e_i,ed_ the_nditions(U)_nd(_)._
_._._llstherefore ob_._ousthat S" " w_li be the firs£ expanded function only if '

._ : -=-_, :=-s,-s.-, + _, +S. (6_
_._ 26_. _ ............. , ............................... .. _....... - ....... :........... __.........

_,:--!In-,the..exp_es'_ion,).. of S(_)j the.enlarged terms then include V-._ . Ob__ot_s2_, _-hel -
.-,2_-_functzon _ is not ex_nded _n these cases. _

b; I

!
_0 _ To investigate the small divisors of the function S(_) it is not neces-

5_....!sa/_ %0 _Tite the equation defining this function in great detail. It is suffi-
5z icient%0 note that its _econd tenm is linear with respect %o the derivatives of

_5-j%he expanded function Stz) and that, in the arguments of this second te_m_zthe
_ _;--_n_m_er_ can assume only the values 1 or 3. From this, it foiiows that v- is

_:ienco_n%ered only in the expanded potion of the function S(_) .
56--i

_"-_ Let us now pass to the equation which f_shes _:) and S(s) . In the
_': !secondmember of thin-equation, hhe most expanded portions include the square

bf a derivative of S__)• Certain of these _tions will be fur%her exp_nded byI
:" _the inteEratier. T_s demonstrates that S( ) contains the small divisor raised

]%Othe third power and that _ ) contains its square.

'_ i It is easy to p_.rceivethe general law. In the cases (6), the series (A)
" iof Section 25 are expanded, in reality, in powers of

i _,"

A Z-- Za, _

_,.-i Thirdly, let us consider the cases in which S('_) is assumed to be the

_ _ifirs_ex_ed function. (T_ conditions (3) are satisfied for the ar_n_nentsof
_: !thefu_,=tions_) and S a_ of their derivatives; sim&larly, the conci-
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i,

-_J am of their derivatives. In view of this and since also the form of the

_ arguments of the function _) is given, it is obvious that, _ the arguments
i-of the function S1_1 we will have either
r

, . ,--_,-s<,_-,"<+7, (71
i

4 Or : - :
7

.'i-" : .- z-----3, --9--<2"--,'<__+6. (8i

:-" £onsequently, the function S(s_) will be the first enlarged function only in th_
'_- ._.see of !

! i

':" : a-----l, #"--8,--7.--6.--5.--4, +3, +4. +5, +6, +7, (9)

- . _ (i0)
"- : - a=3, _--8,--7,--5,--1,--Z,--,, _I,_,+1,+5. "

I) -

-" ,Theprincipal terms of S1_1 t-hencontain v-x

2: - The equation,yielding _2) and S(_), has the form
25__

.2_._

-":;--"Ln-the-expression-for _ _)-,we will only-write the expanded portion. For
:=--:abbreviation,we make _e of th_ symbolic notation
-,, -[._M

-q

-'V
3 dS('_')d[

.. _."ai_a:/

'-_ v,_Ia_s,;,,el a_,':,_a/1+ v,a_m"a_!/. (:n)

v,In addition, we wil] denote by

"_ : f
;,-I

_" .'themost expanded portion of a function f, i.e., the pa_t of f which contains
' the h_ghest negative power of v. In v_ew of this, the expanded port_on of

iwiilbe

•" i (_2!
':" fin the ar_nents of the,_erivatives of g(_) , we have _ = a. In the argtm.ents I
' iofthe derivatives of • _) and S_-_), we always have _ = i. In the arguments .

'_ bf a given product in the expression (12), we will thus have _ = _ • i. So

ii_, Ithat eq.(12) can furnish the expandedterm- of _:1 or +,heterms of S_1 doublyl

!expande_=by integratlon, it is necessary that _ ± i be a multiple of if, i.e.,
i .'thata I. Thus, in the cases (i0), the function _._) is not atall enlarged
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• i

: and the function S(a) includes only the power V-I. We state that this is the

__ :samefor the cases (9). In fact, in the ar_ents of we then bare .
dy

whereas we have

" L=l, ]_--7" a/_

:_ : : ds(Xls)
"-.: in the ar_ment., of . Similarly, in the arguments of g(_I with re-

"3 ;spectto g' , _"; _' or _", we tare

,<

: L=I, i'--j'=_ i I,
•_" .whereaswe will have

:,- _./. ,_.l, f--F,'#+ l

"_ _ : : 1;" _) S(_) with resoect to thes" In the arguments of the der_vatives of and of ,
-": :same variables. Consequently, in the arguments of the expression (12) it is

_-_"--'neverpossible s_t°b_ve _ = so:and j' - j" = sB. Thus, also in the cases (9)
-_--_thefunction _ is not enlarged at all and the function _(s) includes only
2.- ;V-I "

2",__
;:" -- --T-he--equation,yielding S(_) has the-form
2-..__,' I

)0

"" _The second term is linear with respect to the derivatives of the expanded func-i,
_ -_ions S and.S . It I .sults from this that the function S contains at _.

_ most v-s . It is eazy to demonstrate that S(Sin)actual_y includes terms in V-z • ',
!:_-,_Toprove this, it is sufficient to recall that the function _e_) contains the

"_.... part

, Z"tdr d,,'-- ?g  p-l"
:,'s

"',:Inthe functions _) and _._) we will only show the termst

rrl,_,O ;2 Lyl, O,_ ,_
, -'Zo,o,oO + ,_o,o,o_ -,

,, _¢hichare terms of the second de_ree, common to both H(_) and H(._) . The re-. . _)
,,_ _sultuntterms, in the functlon _ , obviously are
.

_._ ; -,,o,o,o_--_-+ ._,.,_o,o'-_,,•

The corresponding terms of S(s_: are once more enlarged by int,egrationand,

20O
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iconsequent3y,include 7-2 .

.: L_t us now pass to the equation yielding _;) and S(3) :

DS(')= p,s,_ S_a).

_'hemost expanded portion of _s) obviously is

i

i: We will demonstrate, as before, that the expression _(_21 will no longer be i

_. _xpal_ed by the integration and that this same expression contributes nothing i_ to the f_mction ._). The other parts of the expression (13),.conversely,

_: .yieldthe terms H_1 which in=lude v-_ and also the terms of SCa) enlarged thre@

_- _timesby the integratlon.

_9 _ It is easy to continue in this manner and to demonstrate tFat the principa!

::_J !partsof the functions S¢'1 and _) include the small divisor, as shown in the 1
2! Tollowing Table: i

2:, _
1

_ _ 8('_:), 8 c_'_: V-l; H_: _'_;
.:5 d

"[, • . . -- ....

" _. 8_'),8('m:V-_; H_):V-2;

:" 8_'_ : V-'; H_): V-_;*c

: 8(,I,) :V--_;
:2

81e) Nit';,): V-_; H_) 74;

',, 8(') :V4; H_):V-;;

_ -, 8(",',),8(s) : V-'; It_): V-_;

:_ • • • ° • • . . • • ....

%-

<

: Consequently, in the cases (9) and (I0), the series (&) of Section 25 can
be considered as actually expanded in powers of the quantity

•-, p'l,

Fir_l]y, -wewill treat the more general case in which the function S(')
i(m 2) is assumed to be the first function expanded by the integration.

"_ In this case, the principal part of S(') includes v-_ •

"' The equation yielding _'+_) and S(,+_) has the form
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1965019998-202



DS(-+_)--__(-+D. _H_"++).
£

The expanded portion of _,+ +d_)ob_d.'.ouslyis

(,

" As on p.2QO, we can demonstrate here that _,.+_s} is not at all enlarged and
" .that S_'+IN; includes, at most, V-I.

" The equation, defining _.,+i) and S('+11 is :_'ittenas

!" Since _,+i) is linear with respect to the derivatives of the expande_ func-

:- itions_:_)and S['+_), it is obvious that _.+i) can include at most v-.I and _
ithatS can _ntain at most V-_ . As on p.201, we demonstrate that S_' °�" _ctually contains v-s .

}-_' :

:' _" In c_ntJ.nt-4, it is easy to denonstrate4 as we had Oone above for _.'+%_1
:: and S('+it_),that _,.Ws) does not contain q-+ and that S_'+a_) contains at

_st V-_ , ar_ so on.

Thus, in all these latter cases, the series (&) of Section 25 are actually
+-_ iexl:_nded in powers of the ratio

2_ . Z-- Za,_

Let us now investigate "the influence of a small aivisor v, for the case of

-_ %ypes where

--. q=_.

,q

Then, the expansions yielding H and S include only whole powers of _.
-,k j

Let us first assume that a small divisor appears already in the function
_ S(I) Table 7 of Section 21+indicates that this will h_ppen only in the follow-

_ng cases:

" in view of the general character of the functions _) +'_s) it is obvic_+! , ,1 ,_ ee,,

,- that the series (_) of Section 25 progress then in powers of 1

+' Let us next assume that the small divisor is first encountered in the ,

: PunctiouS¢'>(m_ 2). ii
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• The equation yielding S(,+I) has the form

D8_.,+') = I](,,,+" -- H(j,,+".

It is nec_.ssalyto fix the e.xpandedportion of _,+x) . For abbreviation, it
is convenient to introduce the notation

[-7l= 3 dS")dl x,,, _,/dSm dl 8,S(_)all,| i

_. IdH")at dlt_) _dt[ (15)
dH("dI + ___| -_w'_l_*'- dr/ d_'|"" + -;_T a:$t h

The expanded portion of _,+x) will then be

: (16

• _ a+l) • $ • ';: It i. easy.to demonstrate that thls part of _ contributed no_hlng to the

function _=+i) , from which it follo_.._that _,,+l)is not expanded at all.
Evidently, the sm_ll divisol enters the function Stin+l)raised at most to the i
power w-_. To demonstrate that S(=+x) is actually enlarged twice, it is suffi-'

_±_, includes the terms" cient to recall that the func2ion _" _
_t

' .u,,_,odS_,.) 9.1,_9.d_"
_:.. --_o,0-_g.¢-+ -,,o,o,,)¥_

:" i(see p.201). The corresponding terms of 5 ('+1) are enlarged once more by the
_- 'integration and, consequently, contain 7-_ .

" : By treating in a similar"manner, the equation yielding "_"+_) S(,+2)h.... and ,
it will be found that the function _i'+s) contains at most 7-" and that the

_" principal part of S_'+_) includes v-_.

_ The general law is obvious. If S(")(m > 2) is the first expanded function
_; %he series (_) of Section 25 will be expanded in powers of

i _ i_

Z -- Z.,

[

! Let us now pass to the types in which

, i g_.

Let us first assume that S(_ ) is the first function enlarged by"the
_. iintegration. According to Table 9 of Section 24, this will happen only in the

._. Icases

., i .=], -- 5 <_,8<. + ,t. (17)
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: iThen, the _rincipal part of S(_2) includes v-I.

The equation y'_elding_.s) and S(2) is written as

DSc2_= R(')--H_).

The function_ 2) of the second term does not contain the derivatives of'the

: _ex_anded function S(_2) . Thus, _.2) axedS(2) present no small divisor at all.
C

-!

.... The discussion can be continued as in the corresponding case for fl_ 3
: :(p.201),demonstrating that the most expanded terms of the functions S_'' and

i :_m) _ontain negative _)wers of V, as indicated in the Table on p.201, with the I
_ yonly exce'ptionthat S( ) is not enlarged at all.

it Thus, in the cases (17), the series (4) of Section 25 are expanded in
:_wers of

;,) (z --Zo,ff

-_ Let us next assume that the first expanded function is S(_) (m _ 2). These

_ _casesare treated exactly like the corresponding c_ses for q --3. The same re-_su].ts are obtained, with the only exception that St_+1_) is now not enlarged.

_ !Consequently,the series (h) of Section 25 progress in powers of

L_, Il

>" , Finally, a few remarks should be made on the types in which

_' i f>6.

_ _ Let S('_ be the first expanded function. We still have m _ 2. As on
_' _p.202,we demonstrate that the series (&) of Section 25 are then arranged in
_ ;powersof

" After having studied the influence of the small divisors on the formal
_ Iconvergenceof the series, we will further specify the definitions given at the.

beginning of Section 2._. We will postulate that a planet _s singly critical if

_ _he integration method of Section 25 is applicable; if, conversely, this method

' ;becomesillusory because of a small divisor z. - _ , we will postulate that th,
iplanetis doubly critical.

_-' In the cases

" q:3, a:l, _ ffiffi-- 3, --. 2, --1, 0, +1, + 2,

_he planets cease to be singly critical as soon as the quantity [z, - _I be-

20_
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: !comes comparab_e to _I14.

In the cases

q_4, a'-l, fl=--4,--3,--2,_1,0,+1,+2,+4,

this will happen as soon a_ ]z. - _I is of the order of _.

In the cases
,/

', q.-3, a_ 1, fl=--8,--7,--6,--5,--4, +_, +4, +5, +6, +7,

,_ q_3, a----S, fl_--8,_7,--5,--4,--2,_1, �„�+2,-_ 4, +5,

q=5, a:=l, fl=--5,--4,--3,-2:--1,0, +1,+2,+3,+4,

: the linuitsbetween the singly and doubly critical planets are passed as soon as

" ![z.- za_l is of the order of _.

Finall_, in all the other cases, tileplanet ceases to be singly critical
"- as soon as [z. - za_ I becomes comparable to _.

_ection 27.

:" Sections 27 - 30 _]i be devoted to ths theory of doubly critical planets.

: _Thus,we assume that the initial value of the variable z is located in the
' vicinity of a certain value _, defined at the beginning of Section 25.

The principles of Section i are still applicable. Only, it is now neces-
sary to select the new characteristic function, denoted by H**, in a different

• ' _manner•

i

"" : Let us retv_:_to e_s.(ll) of Section 2_. Starting from the known charac-
_ _teristicfuncti_ H(z, _ , _"; y, _' , _") and from the unknown function H**(z,
< _' , _" ; _, _', _"), we must form the equation of partial derivatives

,, =.H** as as1-,

_here, we must introduce the expansions

' It = H (0} .-it.. ,_tl;,H {lll)) ._= _t H (!) -.[- ,u'_l'H_1')+ ...,
: i

,_, H** _=H(.O)._4",u'!_--..FLU/')+ ,uH in_,--)-,'?l'Hl't')--..+. .., ,'

..,. S==oo(0)-}-tt'l_Sl'h) + ItS 111+ I¢*hSP"_+ ... :

2O5

1965019998-206



t

and then compare the coefficients of the same powers of _ in the t_ members. _

Setting

_"-" S_S 1°) Si

eq. (I) becomes [

( es,, es, es,_ (31 _., " ==H**., _', _": il + _-_ r,' + dg--i,,_" + d_"l"

: )

This equation is satisfied for _ = O, if we put

ii -!

:_, . H,O,..=H,o,- h(=)--_"_ (_',+ _,,). (_', :

By equating, in eq.(3), the coefficients of _g_ _n the expansions of the _7
:'_, _wo members, we obtain the equation i

:, _i D SI'm = H."m__H ('m ( 5}

. _Thesecond member is a finite trigonometric series with terms of the form I

_ A _os(,pg + i'_o'+ j"_/'). (61 ;:

, The corresponding terms of then have the form

" A sin (,p_ + i'(o'+ i"_")
_' i ,p,,(z) + (i,_.i,,)_ /

"' !_.,_'_obtain S(;'_)_thout small divisors, it is s_'ficient to combine, in ,_a) , _
all terms of _ )in whose arguments we have

_J

,. ,=i., i'--i"_ifl, i_-o, _:_, +_._.... (7',

: Now, let f be any function periodic with respect to _, _' , _nd _" and ex-

,,' pandable in a trigonometric series with ternm of the form of eq.(6). In Sec-
" ,tions27 and 28, we will denote by

_" [11

itheend,stableof the terms of f whose arguments correspond to tho small divisor_
li.e.,the ensemble _f terms of f where _ and J' - j" satisfy one of the condi-
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tions(7).
In view of this, we must put in eq.(5):

He? [H0_,q.

Then, this equ_ ion (5) yields the function 3(q2) without small divisors.

: Let us now compare the coefficients of _ in the two members of eq. (3).
This yields

, D,,S'(*) _r,___H_I, (8

_ where we 1_ve usecithe notation

s tds,'.':V .9,,v
_- 1iI') = 11m + 1._ d_' d,2' + 2z] _ di/ -I -- _ -2 1-d_'-I

•, .7 r-J01.; A,_O'_) rt

azz  ,aso,',, (9

function _._) will be deters&ned by the relationThe

.., = [/_,,]

_ Then, if,is possible to solve eq.(8) for a function S(x) without small divisors,

_,, i Evidently, we _n ccnti_me in this manner and successively determine all
eI j

terms of the series (2).

_' It is of importance to mention that the odd po,.,ersof _ vanish from the

i_ expansions yielding H, H**, and S, as soon as q is an evsn number. This result:
from the last of the relations (25) in Section 2A. We also mention here that

' !?_) and (_- are the first that can depend on theithefunctions H(¢-_) H ' )q-:

' argument y.

," After having defined the functions S(z, _" , _"; y, _' , _") and H**_z, ,
_"; _, _' I]"),we start from the functionI

_. S (z.,, _' , '2")i

_' _andfrom the canonio_l transfonration

dS d,S
-----I

' ' _ ="rift' Y**= _z**
dS d8

207
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' - d8

• _"_dd-_'' '/'**=d_",_,'

_whichcan be also written as

- d (8-- 8(o)1 d (8 -- .$,o)1
z-- z,_= d// ' //**--_ -----dz**

¢ .

.:: . _,_ _,** d (8--8m1 ,,%,_ ,/ d IS-- S(°)),
_" = d_ ' = d_'** (lO

•.: _,, _:,, d (8--,S (°)1 ,, ,, d (8-- 8(°)1
-- -" _*'= dr/_ , r, **-- r_ = d_"**

:-:, .

:'_:i% is-possible to express, by means of this tz-ansfonnation,the variables z, g'- .! 1

:'- .g";_, _', as functions of the new variables z_,, _, _; y¢_, _, _-
"< ,Thus,we obviously will have

_ i 1t 1,, _', _"', 9, '/, _")= It** 1_**, _' _" . "-_**, _ **, fl**, _,'**, '_**).

-: i
-_ --_Fina!/y,the new variables satisfy the canonical system

•_ ; dz** dH** do** dH**

.... ; . d_',. aN,, (n)=.: __. d_'** dH .

-, "--n_"** dH** d,/'** = dH** . ',
: " _ -di-_-=d,;'---_j,' d_, d_"** ,

_.. This system can be reduced +o two c .rees of freedom. To obtain this, let,
I 1

5_ us define the quantities P._, _I-.; _._, _ by the relat±or_
5

z:_** _ _,** cos co_**, _/** == _'** sill _e**,

r" _ _"** _]rl (o"**.
_'. _"** = 0"** cOS (,/'**, , ** ':

.: In view of this, it is convenient to introduce first, in eq. (ii), the canonicalI
,, variables ',

½0... _o'**,

' za.' and, next, the new variables

2O8
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which obviously are also canonical. The function H_ is perlodic with respect

to the arguments 3**, ' '"_**, and _**, with the period'S. In its trigonometric
expansion, we encounter only the arguments

,p_t,_, + ]%',, + f',.j"**
where

*=ja, 7--7" "' --7_," j----O, _ 1, + 9....

The general argument of the function H** thus will be

,p9.. + f,_',. + f',o".. =j_ +re. (_)

°

Consequently, the function H _ depends only on the two arguments v and v' and
does not contain the argumen_-_.. The variables (13) satisfy the equations

: dz = dH,,. d, dH,,.

dt_ dv dr, _: (15)

dz' dH** dr' dH**,
_i_= -dV-' dr, . ,/y

z** = cons_., d(_"** = d__H_**.
.: dr, d_z** (16)

"_ Equations (15) form a canonical system "xithtwo degrees of freedom. After its
integration, we obtain the argument _. by a quadrature, over the intermediary

"- of the second equation of the system (].6).

In the expansion of the characteristic lunction

: H** (z,_, r' _" " r' "**, _ **, Y**, ,**, '; *.*),

'" which is given by the series

, H") (17): • H** = H{o'..+ :,':_H[.':.:_+, .. + ...,

,,wemust introduce
,. z** .= z.,p+ ap_,

" _ c,&==_x', (18)
,m

(',; =- 2X'--2fl Z --x**
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aad also make ,useof eq.(IA).

This will yield

H_'-' -- _ _'_'_"^- {jr + fd).,. --.._ .j,j, _.v_
_,_" (IW

}Id_.-,_ sum inQludes _zi.,v a ___e_-'ten,a_berof te_. The quotients u_, ;,:. . f

are polynomlals In X and _** as well as functions rational with respect to
X. in addition, hi.'_,remains finite for X = 0 since we have everywhere avoid_
the small integration divisors.

In particular, according to eqs.(&) and (18) and according to the defini-

tion of the quantity za_ =_ivenat the beginning of Section 25, we will have

2 '2
mY:- _(z**)--__(e_.--e..)

3 " . . t , • ",X + h(_a.:,)--½_'z**

= .4 _'-- ½_,'z** + const.

.with the notation

A _ -3_zP_.

in the cases of interest here, the variable X will have values np_r zero.

Section 28. _7

For the further discussion of the system (15) of the preceding Section, it
becomes necessary to investigate also some of the other ter_,,sin the series (17)

• of the same Section. This will lead to an enormously large number of different

cases, obtained in accordance with the values of the whole numbers q, _, and _.

For each given value of q, we will arrange the different cases (_, _) in

various groups. For a given value of q, we will designate the group (m)q as
the ensemble of the cases (_, _) for which H_ ) is assumed as being the first

coe£ficient dependent on v in the expansion of the characteristic function H,,.
B_'tow,we give the list of the firqt groups for the various values of q:

i

Groups 9 = 3:

('..),:H_0 dependent on v;

(I),:H_ -=0, H_J,_dependent on v;

(_), __,.-0, ., independent of v, dependent on v;

210
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{2),:H_=-0, Ht._ independent of v, H_ ) -_C, M(2) dependent on v;--___

q_=4:

(I).:H "_..dependent on v;
. 2)

(2).:Hi)._ irxlependent of v, _ dependent on v;

.q--5:

_);: HtJ._ independent of v, _s_) dependent on v;

_l_.:I/?l independent of v, _) = 0, _._) dependent on v;

q=6:

• • _)
2_,: AqJ._independent of v, h_ dependent on v;

We will then derive the different cases for each of these g,_ups. /AS

First, let q = 3-

We kave shown that

The various terms of the function H(_) correspond to the six combinations

in Table 5 of Section 2_. In all arguments of this function, we have

, ""<0 3<j'-f'<+2. Q)t=l --3<f+7 _- , -- -- --

To obtain tha terms of the function _i_) all..** , we mr,st retain, in _2) ,
terms where

f-f =JD.

Thus, the group includes t.he six cases

(½),: all, _.-ffi --3,--2,.--1, O, +1, +2.

Below, for the six cases, we give the expression of the function F(__)
which al_ays has the form of
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H."2-_ _::_ cos (v + re}:"i,#

c-30 f$-

1, --3: 2H.,'7__o(2Z) : cos(v--3v'},

], -2: _H',.'_-'_°o2z'cos(v--_v'),
, 2 "''','''° ....... (__¢),} --1: tl],-,.o _zx ).- cos

Or$';_0,0
l, 0: -.'*1,0,0 COSY,

*-_1"_ O t :'. ,
l, + l: 2Hl,-,.__.(.Z)'-(27. --2Z--'z**)cos(v--v'),

J::.O,_ #
1, + 2: 2H,,,_-2(27. --4Z--z**) cosy.

The coefficients H_.,_: are _ven by the genera], formu2a (23) of Section 2h.
The last of the relations in the system (25) of the same Section show that s =
= 0 in this formula (23), from which it follows that the s__x mentioned coeffi-
cients are polynomialsin eo, with numericalcoefficients,i.e., with constants.

Let us now pass to the function_) . We will have

H'.':= [}_,,'q.

The expressionfor the function'_x) is given by eq.(9)of the pre_)ing
Section. In all argumentsof the derivativesof the functions_2) , _._ ,

. and S(_) that enter this formula,the conditions(1) are satisfied, in all
argumentsof the squaresof these derivativesas well as in all ar_nents of

_ their pairw_seproducts,we will thus have either

"- t=0, --3<_'+i"< +3, --5<_'--i"< +5, (2)

or else

,=_, - 6-A/'+ y'¢0, --6<_j'--i"<+,. (3)

in addition, accor_ing to Tab2es 1 - 3 of Section 2£, the relations (2) occur
also for all arguments of the function _ _) which appears also in the expressiors
Of the function_ I} . Thus, in all argumentsof the functions_x) , i._._7and
S(x), eitherthe conditior_(2) or the conditions(3) are realized.

_i) ,T°first°btainthethetermstermSinwhich°fthe function .¢i)**, it is necessaryto retain,in

t = O, j' = i" _- _v_,

and then a]l terms in which

, : 9.: j,,, j' -,_"- i_.
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L_t)
Thus, in ._. , we will have in all cases a term which is a _iyno _mial of the

third degree in X' , rational in X. In order to _ve, in _) , tenr_ that_ are

dependent on v, it is necessary either that __q

e = l, --3 <_<_ + 2,

or else tb_t

a=,2, --5_<_<.+ 3, (8 being odd).

Consequently, in the cases of the group (:_-)3,the function ._.w(1).has the
form.

m,)..=h,,,o.0+ _ hL,.,_o_(._v+ j'_'). (L)
#,

tl
in addition, it is obvious that the group _)3 incln_es the cases

(I)3 a=2, p:--5,--3,-- i, + I, + 3.

in all cases of this group (1)3 • we find

•. vh,,) (_+ j'_) (5)He')= _(o_)o+ x_ ,j,cos
j,

Finally• in all other groups for q = 3• the expression oC _.L ) becomes

H")= h") (6)
•" 0,0"

In these formulas (_), (5), and (6), the quantity _o_) si_ies a poly-
nomial of the third degree Jn X' • Nevertheless, the expression of _),may vary[I)
from one case to the other. The coefficients h_j _re Doiynomials in X of at

.motetthe third degree. Finally, the coefficients h_ ) are odd po]_zrnomiais in
_X" of at most the f_th degree. All these :oefficients, in addition• are
rational in X and finite Cor X = O.

We verified that the sum Z _n eq.(.5) contains on12 a single term. in the
i,

cases in whic _ _ = -5, -3, +i• +3 and only t_) terms in the case of _ = -I.

We also would like to make the important statement that the coefficient of

u_t) is positive if q = 3. This results from the factX's _n the expression of ._

that %he terms of the sixth degree of H_, ) coincide with the terms of the sixth_

degree of the function _!

3 "dS_l_ '

which is always positive if q = 3.

It is possible to continue the discussion without giving a detailed expres-
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sion for th_ function _2) . It is sufficient ¬the general character
of this function. ;.]ere,we first have t_e te__n_' in whose arguments we
have (according to Tables 5 and 6 of Section 2&)

,=_l, -4<f+f'_<+l, --4<f--f'<+t;.

Each of the v-_-_._,te._r_of the function _W2) can be considered as being com-

posed of two factors. In the arguments of the first factor, the conditions (i)

are satisfied; in the arguments of the second factor, either the rel_tion_ (2)
or else the relations (3) occur. In all these terms of the function _._ we
_dii thus have either

,--_, --6<j'+j"<+s, --s <_j'--j" <_+ 7,

or else

,=3, -9_<_i' +_'_<0, --9<_'--j"< +6.

Thus, so that _._) does not vanish identically, it is necessary either that

a=], --s<_#_< + 7,
: or that

a_30 --8____<+ _

(_ and B being mutually first).

Consequently, the cases of the group I_ ) s are as follows:

(_=1, _=-'8,--7,_6,--5,--4, +3, +4,+5,-t-6,+7,
(!_,:

'- -"_3, //=--8,--7,--5,--4,--2,--1, +1,+2,+4. +5.

• (a/_)
In all these cases, the function H_H_ has the form, _.2

- H._,)= _ hi;, ¢o._(_+ i'¢).

Passing, finally, to the function _), it is easy to demonstrate that, in_
j' j,,all its arguments, the numbers _, , and satisfy the conditions contained

in either one of the three following lines:

t,=0, --6_</' + j"< + 6, --lO<j'--j"<.+]O,

t=,2, --9<j' +j"< + 3, -- Ii <2_--j"< + 9,

t,=4, --12 <j' + j"< 0, -- 12< j'--j" <. + 8.

23A

i

1965019998-215



in all cases, a part of the function _) has theThus, form

h(2) z.(2) 2v'.O,0 + ,tO,_ COS

This is the part which is independent of v. So that _) _II contain terms

dependent on v, it is necessary:

either that a = ], -- 5_<_fl_<_+ 4,

or that a = 2, -- iI <.#< + 9 (_ being odd)

or else that a=4. --ll<fl<+7 (_ being odd).

Consequently, the cases of the group (2): are as follows:

a=2, _9=--11,--9,--7, +5, +7, +9,

(2h:
: a=4, _-------11,--9,--7,--5,--3,--1,+1, +3, +5, +7.

In these particular cases, we obtain

_/(2) h{2J h(2)•. = o.o+ o.,_o_2_'+ _hl._,_o,(,,+ j',,').
._'

, We ,_ilInow pass to the types in which q ::_.
!

The various terms of the function H(JJ co_Tespond to the combinations of
the Tables 1 - 3 and 7 of Section Z_. I. _ny argument of this function, we will
have either

=o, -2._<.i + f'_< + -% -4_<_j'--f'<_ + 4, ('0

or

-- t= l, .---4< j' + f' <_o, --4_<j'--f'_<.+4, ,,+3, (8)

' : To obtain H(,¢_) , it is necessary, in I_x) to retain first the terr_sfor'

which

i t = O, j' = j" = ._,.,

and then the te_ for which

,... 1=i,,, i'---f' =i_.

Thus, the part of #_) which is independent of v will be a polynomial in k',
independent of v .

The cases of the group (I), in which the function _) depends on the argu-
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meritv, are as follows:

(l),: a=l, #_--4_ --3,--2,--I,O,+ I,.+ 2,+ 4.

In these cases, we have

• uf') _,,L _''') j'V)._,. ----_,, + ./_,L]j,cos(v+
f

In all other cases, the expression for _._) will be simply

H(n _(n
• * _ nO, O,

: It is easy to write these expressions in detail. The first of the formula.,
in the system (22) of Section 23+,for k --l, as well as Tables I - 3 of the
•same Section, indicate that L

(1) itl, 4, 0 '2 1, 0-,S , "I r2l, O, • _,,l:,., _o,o= _.o.oq,, + Ho.o.o_,_,, + ,,o.o.o_',o

A"° ......o,,,,,.,o,os , (9i
" + 0:0:0(',%+ _o.o.o_,, + -',o.o.o--z-_-z ,,. i• p

First, we must replace z in the exoressions (22) of Section 26.by z**, in order!
-" .'toobtain the coefficients _, _, and }_; after this, we must make use
; Of eqs.(18) of Section 27. In _ddition, according to Table 7 of Section 21.,
"- the expression of the part of _) which depends on v in the various cases of
:- the group (!), is _iven below:

z1(U _(z}

:_ 1 --4: . z,-_,ot_zlco_(v--_v'),
1.30 _ s

I --3: 2H_,z_o(2_)_,cos(v--3_'),
o]r]l,2,0 _ I

1 --2: _l.-_o:_Z cos(v--2V),
o FjI, 1,0 _' I

• l --l: -,_,,-_,0(2X)_'cos(,_--,,'),
I O0 l,£,_

,' 1. O: _Aqlo_oCOS_+ 2H,,_,,__x ('_X'.-x.**)oos(_--'_),
1,1, _' I l[s rI + I: 2H_,-I,_s(2_) (2 X-2_-z**)OOs(v_v'),
_,0,_ ,,

I, +2: 2[]_.o.-=(2Z--4X--z**)cos_,
q I2'], O, 4_ ,'0.1 _. t|

I, +4: -,.=ko.-_,-Z--oZ--x**) COSy.

H,

' Equation (23) of Section 24 and the last of the relations in the system (25) of
_,a'_ _"

Zhe same Section indicate that the nine coefficients n:d.,F are polynomials in
,_ithnumerical coefficients, i.e., are constants.

': ' To study the function _) which is = [_) ], we note that _) is obtain,_
from eq.(9) of Section 27 if all the superscripts there are multiplied by 2.
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Let us first set aside the first part }_2) of eq.(9), modified in this manner.

dF__) dS(_)

Each of the other par_.sis a product of two factors (e.g., d%_, - d--_m---jj in

whose arguments the conditions of one or the other of the lines (7) and (8) are
satisfied. In all arguments of each of these products, we consequently will

have either /55

=0, _4.<f+ f'< + 4, --s<_j'--j"_< + s, (i0)
or

, <" "'<+ (iit=l --6<j'+j"_<+2, --8 _--_ _ 8,

or else

_- ,,=2, -8_<j'.j"<o, --8.<f--j"< +s, ,-+7. (12

'/ i

In the first part _2) of the mentioned expression of _2) , all arguments also

satisfy the conditions of one or the other of the lines (i0) and (ii). This is_
• :indicatedby Tables i _&, and 7 - 8 of Section 24. Consequently, in all arga- i
, ments of the function _J , the conditions of one or the other of the lines (i0),
: (ii), and (12) are satisfied.

To obtain H_ ), it is sufficient to retaiu, in _) , the terms in whose
arguments we have

'=#,, j'-J"=jt_, j=o, + 1, ± 2....

_: In all cases, it will be found that the part independent of v has the form

•• /_2_o,o+ h_'_cos2¢.

Next, so that _) _._hallinclude ten-msdependent on v, i_ is necessary
_ either that

.... a=l, --8%_g. + S,

_,, :orthat

':, a=2, --7<_:+5 (_ being odd)

Thus, the group (2)_ is composed of the cases

... (_ffi,l, _ = --8, --7, --6, --5, + 3, + 5, + 6, + 7, + 8,
... (2)_:

"' a=2, _ _- --7, --5, --3, --1, +1, + 3, + 5,
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ilnthese cases, except in the case in which _ = i and 3 3, we will have /56

("4 h(2) _2) %?1.(2)H,. = u,0+ I_0,_cos2¢ + _,,j,j,cos(, /v').
i'

In the c_se in which _ = 1 and _ = +3, a term is added for wnicL j = 2: we

'- found that we there have j' -"O, such that ._heterm in question has the form

h_2)
_,ocos 2v.

Let us now assume that q = 5.
L -

', Then, we have

H ('!'_)= O, Hi',':)= o S (',_:1= O.

It follows from this that
,) Hm,,= [II(':].

In all arguments of the function _ z) , we have

t=o, --2<f+f'<+2, --4<j'-j"<+4. (13
'{,

,. Conse_tkent!y,the function _) will in all cases be the ensemble of the
.<-"_terms of I_"z_ , where j' = J" = O. Thus, we al_ys have

/

h TM_ hm

', _he expression of _oz) will also be given by eq,(9).

We now pass to the function _) which J_.given by the formula

tl('r:_--=[HP/'J].

'_ In all arffamentsof the function ,la_._, , we ',%_ve,in accordance w_., "
"" iTable 9 of Section 2/,,

t,==1, --5 < ;' -,-j" <_O, --5<j'--j"<_ + 4. (1_)

Consequently, the function _#1 v_niahes identica21y exc,_pt- :;he_%ses i

(tt,: ,,--=x,_r.... 5,- 4,-- .%- _, .-1,0, +L., 2, ._:_.., /';7

r'': _ _hich thus constitute the group <_32)s . In these cases, _s _ave

: H(:_= E_,_',.)!oo,(_+i'_').
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Ordin%rily, the sum comprises a single term; on]y in the cases in which _ = -i
or 0 _i]l it include two terms.

The function h_ ) will _mve the expression

where

, jdH" d,S") dItC.'2dS¢" l
I: I

(16

_,,,,,.,lias., t, tax.q:[

In all arguments of the derivatives of the functlons h(i), _._i), and S(x),
i the relations (13) are satisfied. It follows from this that

,' ,=0, --4< i' + j'' < + _;, .-8 < j'--j" < + _ (].7)

in all arguments of the function _a) _ H(z). In accordance with Table h of
S,ection2/,,the same relations are fulfil]ca for all argument_ of the functlon
F__) . Con=equently, they are satisfied by the arguments of _z)

Thus, the function z_, in all cases, is independent of v. This means
that the grouo (2)s does not exist.

, , ;)
: In the expresslon of the functlon }_,_, we could expect a term in cos 2v';
howe_er, this term vanishes identically, and the flmction H_ ) will _til] have
the form

H',_.)---h'0_0,

where _o_) is a polynomial illX' of the third degree and independent,of v as
well as of v' .

Let us finally pass to the types in which q = 6.

Our above statements on the f_iction _l) for the case in which q = 5,

remain valid also for q a 5.

_) _ s) • -',,¢ c nThe functions _ and H are also gZ_en by _ 15)_pd (16). The o -
" _ 2) (_) ',ditions (]7) are fulfilled in all a_ents of the f,mc ion _: - H and ,

_also in those of the arguments of _°' in which _ = O, In the other ar&u_mentz
lofth's function v(S), we wil? have, in accordance with Table IO of Section _¢,,0'!

,=z, --c<y'+j"_<o, --_j,-_,,<+_, ,,+_.

As for the case of q = 5, we find also for q = 6 that,the rm,rt of
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which is independent of v, is also independent of v'. For all values of _ and
• t ,

B, this part of _,_) is a polynomial of the third degree zn X , ratlonal in X.

The function _) migh_ also include a part dependent on v, but this will
happen only in th_ cases of the group (2)6:

(2),:

,_=--6, _5, --4, --3, --2, --1, 0, +l, +2, -t-3, +4, +6.

In these cases, we will have

Hem..= 0_2_0+ _ ,i cos (v 4 fd)
j,

Accozd!ng to Table i0 of Section 24, the sum includes a single term if B = J' -
- j" = -6, -5, -_, -3, +1, +3, +_, +6 and only two terms in the cases in which
B = -2, -1, O, +2.

.Inall other cases, we obtain

,i,_ 0,0"

We should like to make one more remark on the types in which q > 6.

In that case, the functions ]_) and H** are polynomials in X' of the
f

second resp. third degree, rational in X and independent of v and of v .

Section 29.

We know of no completely general method for performl_? the formal integra-
tion of eqs.(15) of Section 27. The r_nonical system in question enters the
tyI_ studied in Section i. However, the method of reduction diocussed,there is

r_t directly applicable to the present,case,._o)sincethe derivative of H_ ) _th
respect to X is assumed as small and slnce H_ does not depend on the variable
X' • Nevertheless, we will investigate here a certain number of rather extensive
cases in which a formal integration of the investigated system is _ell possible.

Let us assume first that the initial value of X is of the order of _ and,
in addition, that the initial value of ×' is neither too large nor _o small.

In our investigation, it will first be necessary to exclude the cases of
the groups (_)._,(1)s, and (i)4, and treat them separately later.

It is convenient to put

z= ..'s'z,, z'= _d_+ ,.'_'z',, (1)
:W

H** + 2 xe.--C_=llG, : =t_'l,t, =t_,|.
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We will assume that the initial value of IX_J is com__arab!ein _agnitude to
unity aand that the value of the positiv.e_pa,rameter X is sufficiently large so
that/X' can be expanded in DO_?_ of _Xz.

The variables Xx, X_; v, v' satisfy the equations

dz, dO dv dO
-d_--- d_J' di = --d_,'

(2)
dz' , dG dr' dO

In several formulas of the present Section, we will use the notation /60

f

to indicate the value oi"any function f(x, Y") for the values X = O, X' = _ of
the two variables X and X' •

In view of this, we obviously will _gve

G ----G, + :i",G,:,+ !IGt+ ...,

Go= A X,:+ %..

;u,Y'o aJ,_.,,
a,,,=-aZz, +_a-_%-°z,' + .q._._,

= _-a},-_'' + a_'_' :_':_"+ _ ax" _'

"*" " + ' dz;- X' ++ dz L ,.,

• • . ...... , . . o • • • • ..

In a given case of the group (r)q, the quantity C,t.-x will be the first of the
above flmctions that depend on v.

Since the initial value of IX:I is comparable in magnitude to unity, we
can reduce the system (2) to another system with one degree of freedom. Accord-
ing to the method given in Section l, we will start from the equation

by introducing there
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G*_ ao*+/i,a., + :,a,'+ ..., (3)
S ==80 + !*':'8,:, + it 8, + ....

Putting

So= 7.,v+ ;<,'v',S = 8_.+ J8,

the equation in S can be _Titten as 161

'; z,+- .z,'+_j;v,v' =a* z,,z,;v+d-z. _.

In t_e expansions of the two members of this equation, we must compare the co-
efficients of the same powers of _a.

The notation

[_,

is to represent, in this Section 29, the mean value of any function f, periodic
inv.

In view of this, we find successively

re_

Co*= Go= A Z,'+ hm.0,0'

, , d8,:,
_a X,--d-¢+ _'' =" Gt:,,

dh"_ dh_fo ,
v a,', = d:[_-° Z, + -d-zCX,,

s,,,=- .!_ fg_e,5_,,.
2Az,J "* " '

dS= [dS=l,l'dG,:,d&;, d G,,,d&/,
2Az._I-_;+ A _dv] 4 dxl dv + + G,=G.*,dx,' dr'

... a,*_-_[a,] + _-_y,,[(m:_._),]
]_._,_lu d'h(') "..-_m'

"'0, 0 t O,0 I _ '°0, 0

_'2 -d-_-x, + ;_--_,z,z,'+ _-_-,- z,"

-- -J--uy_,l.
+CH[_J+4AZ,=, ....,

• . . o • . . o • o . • o . • o • . • • • •

In any case of the group (r)q, the quantity Sr-x obviously is the first of the
functions S_a, St, ... which is not identically zero.

222

1965019998-223



•%s soon as the functions G* and S are known_ :,:ecan start out from the /62
functio:-

8(z,*, _.'_',.. v, v')

to fo_ the canonical tmn_fonnation

.,,o o_ d(S--8.)
_l -- Xt* ._ _,o _ oo, lfl,

dv dx,* (h)

d (S-- 8o), v'* -- v' = _ (8 -- S.)
x,'- z,'* de --_?* ....

In virtue of this ,*ransform_tion,we will have

G(X,.X,';v,v')=G* (X,*,Zi'*;d*).

The new variables h_ : X_*, v*, v'* satisfy the equations

d_ dr* dG** = O, dr dX,_' (5)

dx,'* dG* .. dG* (6)

Thus, X_"is a constant. Let us assume that IX_] is comparable in magnitude
to unity.

The system (6) is canonical, with one degree of freedom. By means of the
first integral

G*(x,*, x,'*;v'*)==g, (7)

"whereg is an arbitrary constant, the quantity X_* will be given as a function
of bhe angular variable v'*. We postulate that the variations of X_* are com-

patible in magnitude to m_ity or less. This results from the expressions of the

f_nctions C_*,G_, _. In fact, the first of these Vunctions is constant with
×_; in the two other functions, the three coefficients

/63

, "* "0, 0

dx"' aXax"

are not all small, since they only include t_D arbitrary parameters _** and _.' •

In view of this, the system (6) will yield X_*, cos v'*, and sin v'* as
periodic functions of t, with a period fiwhich is extremely long, at least com-
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parable to -2. The absolute value of the function X_*, defined in this manner,
always remains inferior to a fixed quantity comparable in magnitude to unity.
With respect to the .variations in the angle v'*, two cases must be differenti-
ated, depending on the values of the constant g. Either the argtw.entv'* will
have a mean motion such that v'* increases or decreases by 2n during the period
or else this argument will execuLe v_riodic oscillations between two limits.
The second c_3e is that of libration.

After integration of the system (6), the second of the equations in the

system (5) will yield v*, composed of a linear part in t and of a periodic part

with the perio_q. The principal motion of the argument v* is comparable in
magnitude to _.

Let us now ruturn to the relations (&). The two equations on the right-
hand side are of the generalized Lagrange type with two variables. After solv-
ing these equations, we obtain v - v*, v' - v'*, Xl - X*, ×_ - X_* as hmctions

of X_*,X_*, v*, and v'*, periodic in v* and v'*_ with the period 2n. These dif-
ferences, incidentally, are of the order of _r- in the cases of the group (r)q.

We h_ve assumed that r _ +, from which it follows that the mentioned differ-

ences are small quantities, comparable to _ or smaller. On replacing X'* v*
f'

and v'* by their expressions as functions of t, we finally obtain v - v*, v -
- v , A_, and X_ as oscillating and finite functions of t. Thus, the formal
integration of eos.(15) of Section 27 is _ossible if the initial value of X is
of the order of _, except possibly in the cases of the excluded groups (_)3,
(1),,and(lb.

Below, we give an important result of the above statemenLs. Let us con-
s_der the system (15) of Section 27, by naturally assuming that the fm_ctions
H_ _ and _) do not depend on v. Let us consider a general solution in which,
at the origin of time, the absolute value of the variable X is comparable in

magnitude to _i_, whereas _he correspondzng value of the posztlve varlab]e X
is neither too large nor too small. Then, the variable X always remains more
or less constant and of the order of _i_, while the variations of X' are of the
order of _. Later, we will have occasion to make use of this result, in
studying the stability of motion of doubly critical planets from the viewpoint
of formal calc,Jlus.

Here, we will assume that the initial value of X is of the order of _ or
smaller and also that the inltzal value of X zs ne,_ner too large nor too

(_) i)
s_l. First- we will exclude the cases in which the functions H_ , _A ,
_,_) , and HZ ) are not all independent of v, i.e., the cases of the groups

, (1),,
We can set

f=f +-z,'. (s)

H** + 2- x**-- const, =!_'0, _--:,_,t, =#_'_.
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Let us assume tPat the value of the positive parameter _ is sufficiently =ar_e
so that /_ can be expanded in powers of _X_.

This will lead to the equations

dT., dG dv dO

dr.,' do d4 da (9)

The function G can be expanded in powers of ,_ :

,'. (10)G _ G, + u--G,;,+ ti¢71+ ---

In accolxlancewith Section 28, we know that

"'*@ "'0, OI

H_2 - 0, H_J = h_2_+ h_o,o o.z cos 2v'.

In view of this, the function Go is expressed by

dh a_ dh_'_
u,o °'°x' 2,,'.Go= AZ," + -d_- 7.1+ .....dz' "' +

In Section 28, we demonstrated that

h_-0, ;f q>5.

Thus, as soon as q > 5, the system (9) will have the normal form given in
Section 1 and can be integrated from the viewpoint of formal calculus, if the
two quantities

"Az: +-d_- .d dx'

are not both small.

However, we also must consider the types in which q = 3 or i. So as not to
go into too much detail, we will assume that the value of the derivative

dh'o
d z'

is not too close to _ero. It is then easy to reduce the system (9) to another
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system which has the nor_Talform. It is sufficient to set

h{")
Z/' 0,2
• = z,'+ dh_ cos2v'

df

and to use the canonical variables

7.,,7./';v, v'. (12)

These variables satisfy the equations /66

d :_, dG dv dG

dz,"da de aa (13)
dr-= d-v'' dr dx,"

where G is now expressed as a fur_ctionof the variables (12). The principal
part of 3 will then be

G°----A zI'+ -d-z" + _ u,_ ,d z' '"

Thus, the canonical system is reduced again to the normal form given in Sec-

tion 1. It is p_,s_ible to integrate this system, since we have assumed that the
coefficient of Xx in the above expression of C_ Is not zmall.

Here, we will make a final remark on the variation of the angular variables
in the cases with which we are concerned since p.22&. If the two quantities (ll)
are not approximately at a commensurable and simple ratio, then each linear
combination of the arguments v and v' will certainly include a term linear in t.
If, conversely, a divisor of the form of

(where k and k' are two integers) becomes small and if, in addition, the inte-
gration constants satisfy certain inequalities, it will happen that the linear
combination

_,_+ k,',/= k(_pb,,-,_,_"**) + k'(_'** + ,_"**) (l&)

of the arguments remains enclosed between two limits. Let us see what this
means. In the Introduction to Part II of this research, we defined what we

called the eccentric vector of a minor planet as well as the longitude of this
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eccentric vector. Let now n, n', and -_" be the mean motion_ defined on P.196.
Let, similarly, -_v' be the mean motion of the longitude of t_e eccentric /67
vector. In vie_ of this, it is obvious that the following relation will exist
between the mean motions :

c,k [pn-- (p + q)n'_ + k'!, _; + (k'--kfl)jtF'= 0

in the case of libration.

Section 30.

We _ill now resume the integration of the system (15) of Section 27, for
certain of the cases that we had excluded in the preceding Sections.

Consider the cases of the groups (r)q whsre r = _, ±, or +. It is here a

question of integrating the mentioned system, assuming that the initial value of
the unknown X is of the order of _r]2or smaller and, in addition, that the
initial value of X' is neither too large nor too small.

We then set

X =!tr'2;G, g'= g' + ttrI'Z,',

¢ (l)
H** + ,_ z** -- C = !ttG, r = ,.'t' 4 = !t";_+lt.

The variables XI, X_; v, v' satisfy the canonical system

dz, dG dv dG
d_-=_, d_ =-_-_: ,

dz,' da dr' dO (2)
d;-= _¢' _- = - d-;/'_"

...In _ the function G can be expanded in powersthe cases of the group (%')a,
of _. We set

O = Go + _,'I,_,i,+ #t,O_,, + .... (3)

The first functions C_ then are expressed by 6_

_o_--Az,'+ ,rt_,2,= Az,'+ l_i',;_co._(v+ i'v'l,

G,,,_= -d_*-- ;h + dx*'* X,',
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1vlil:l_:i) di-H_'_i 1d_-H(j_I ,_
a,,,:= 2 -dz' "X,' + dz-d_,_z,x,'+ :/dz" z, + H_£).

In the cases cf the groups (i)a and (1)4, the function G can be expanded

in powers of _. Then. let

G= O_+ :,',':G,;,+ t,G, + .... (5)

In these cases, we will have

ao= Ax,' + H(,,= Az,"+ i_ol_o+ 'V1_.i-,cos(v+ j',,'),** .a_ l,j'
d'

(6)

,_,;,_ -d_ z, ._-,_._--z,+ H_.

Finally, in the cases of the groups ( )a and (_-)s, the expansion of G

wu_. have the form

(7 = _o + #I,(7,_, + #:'G,i, + """. (7)

Here, we will have

In all the investigated cases, the functions G. are polynomials in ;_. and
K_, periodic with respect to the arguments v and v' , with the period 2n.

The system (2) does not have the normal form investigated in Section 1
since the principal part of the characteristic function depends on the angular
variables.

We have shown in Section 28 that the function _a) in all cases of the 6_

group (_)a includes a single ter_ .which,in addition, is periodic. We also
showed there that the function H_ _ includes a single periodic term in all cases
ef the groups (1)s and (1)4, excerptin the cases

_.=3, .:-'), ,_=---_, (9)
_=4, a=_l, fl=O,
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where it contains two terms. Similarly, in several cases of the g_ups (-7)s

and (3)5, the function _s_) contains a single periodic term; in other cases
2

which we do not believe necessa_, to specify here, the function _) includes
two or three periodic ter_.

In the discussion given below, we will exclude the cases in which the
function C_ contains more than one periodic term. The cases, excluded in this
manner, actually seem to present serious difficulties. In attempting to treat
these cases, one encounters differential equations "hich it seems impossible to
integrate by the presently known analytic methods.

If only a single periodic term exists in C_, it is easy to reduce the
canonical system (2) to an especially interesting form, by a very simple canoni-
cal transformation:

x'=--fZ, + Z,' y'=v'. (13)

(The variable y, temporarily used here, must not be confused with the argument y
defined in Section 16.) The variables x, _ ; y, y' satisfy a ,_%nonicalsystem
of the type

dx dF dy dF

d z' d F d y' d F (li)

_-__dv" d_ d_"

whose characteristic function can be expanded in powers of a small parameter

F ----FC0)+ :dF")+ !d'F(')+ .-.. (15)

The principal term of this development has the fcllowinovspecial form:

F (°)= Ax'-- B cos y, (16)

where B is a constant, which we obviously can assume to be._)sitive without re-
stricting the geverality. The followin& functions F(I) , F( ), ... are poly-
nomials in x and _ and are periodic with.respect to y and _') having the period
2_. In the actual cases, the functions F_°) and F(I) are directly derived from

eqs.C&), (6), or (8).

We will now investigate the system (i_).

This system is easy to integrate if _' = O. Then the Jacobi equation of
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partial derivatives becomes

.4idsl'
_dy] -- B _,osy = By,

where y is a parameter. This equation is satisfied by the function

B .....

Let us now assume that the small parameter _' is no longer ze_: In
eq.(17), we can consider y as a certaan functlon of a varaable x and replace x

• . O O • •

and y by new variables x and y , by means of the canonical transforn_tlon

d8 "

(is)

1/7--_--cOSy

The function y is more or less constant because of the Jacobi integral /73
F = const.

Below, we will assume that the value of the function y never approaches a
value of +l too closely.

Two cases must be differentiated, depez_ing on the value of y.

Consider the first case in which

7>+ I.

Then, the argument y increases infinitely with yO. [This happens if the
square root in eqs.(18) is positive, which we asmune here. If x were negative,
it would be sufficient to select -x and -y as variables instead of x and y.] We
will define the relation between y and x° by expressing th;_tyO and y increase
simultaneously by 2n. From this, we obtain the condition

• . 0 -I " " 0 ,
in vlew of thls, x and y - y are per.odlc in v . wlth the period 2N. In addi-

tion, the functions x and y deperd in a certain manner of y(x°) and are holo-
morpheus as long as
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x°>O i.e.,y> 4. 1.

Consider nex% the second case in which

--l<y<+l.

it is then neces_arT that

--y<cosy< +].

Consequently, the argument y can never exceed the two value" ± cos-I(-7). In
this case, we will define the function y(x°) by the relaLion

/72
areeos {-;.)

2.r=2 r Adz o4 !/7q'cosy (20)
7=+1 /or x°_O.

Thus, the variables x and y, expressed as functA ons of x° and yO, are periodic
in Yo with the period 2_.;in addition, these functions remain holomorphous as
long as

--c<x°<O,

where c is the value of .._ which corresponds to y ---1.

In both these cases, the variables x° , xt; yO , f satisfy a c_,,onica3

system

dx ° dO dy ° dO
df =dyo' dr =--d_*'

da" dO dy' dO
d,: =dy" d; ---dx'"

The characteristic function _()o, x' ; _, y') is nothing else but the function

F(x, x' ; y, y')oafter x and y have been replaced by their expressions as a
function of 7(x ) and yC, derived from the transformation (18). Thus, the

function _ is periodic with respect to yO and y' , with the period 2N. In addi-
tion, _ can b_ expanded in tne form

,.o= 0(ol + ,_'O_u + tt"O(_) + .... (22)

The first term of this series has the expression

q,lo_= B 7 (z°) .

Consequently, the system (2i) has the norr_± form given in Section i. The
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method of reduction discassed there remains applicable here as long as the
divisor

dCto, d7 (23)
dx(Oi = B dzo

does not become too small, i.e., as long as xo does not approach too closely '"
the value zero (or else as long as v.does not approach too closely the value +3_.

To reduce the system (21), we start from the equation

_dS_.,d8. y,)=q,,(zo z,; .

The unknowns _. and S can be expanded in powers of _' , in such a manner that

¢. = _) + ,'q_:)+ :/:_._)+ ...

8 = 8co_4 t/8("+ l_"Bc2_+ .... (2Aii

We set

S (°)= z°y ° + z'y'.

We find first

qj_) = q,to,,= B 7 (._)-

Next, to determine _(.x)and S(I) , we obtain the equation

d _(o)d,S{t)

So that S(I) be periodic in yO, it is necessary to put

2_

In view of this, the function S(l) is obtained after a quadrature and without

d_(o)
small divisors, since we assumed that the derivative dxo - is not small.

Under this condition, we can continue in the same manner and successively
determine the various terms of the series (2_).

Let us assume the following function as being formed: ___
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S(z°,. ' •z,, yo V,).

By means of the canonical transformation

dS d8

xo = dy°" yo. = d_,'

ds (25), dS
x = dr' f*= d_'.'

we introduce new variables x_, ' o ._; y., y. which satisfy the equation_

d.-O. d,f. de. (26)

dz'. d_. d#. da,. (27)
-d_ = d_',' d_- = --d_--'."

It is obvious that

X°, _---const.

We assume that the x_lue of V(_) is not too close to +i.

! !
The %-ariablesx., y. satisfy a canonical system (27) with one degree of

freedom. Because of this, we obtain the relation

• , (x°,, z',; y',) = # = const. (28)

I
Thus, 4 is a certain functicn of y.. We must assume that the characteristic
function @. is such that the absolute value of 4 always remains below a certain

limit, comps,table in magnitude to unity. In fact, for too large values of the
quantit_ Ix.[, the expansion of the function _. in powers of the given para-
meter _ could become illusory, siDc9 the various terms of this seriesl.arepoly-
nomials with respect to 4- Let _kj be the first of the f-._nctions_ J, /75
_. , ... which is not a constant. If the abb.eviated relation

,_._,(_o,, ,. (29)x,, y',) =: const.

defines a limAted function _, then the complete reLRtion (28) will do the stone.t

If, conversely, in the relation (29_, the quantity x. m_y become infinite or
else if _k) no longer depends on x_, then the integration method given here is
no longer applicable.

Thus, let us assume that [4[ .slays remains below a limit which is not too
high. It is obvious that _, cos y., and sin y'.are periodic functions of m.!
At the er;/of the period, the argument y. will either have increased by 2. or
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else this argument will have resumed the value it had at the beginning of the
period.

The second of the relations in the system (26) indicates that the deriva-

tive of the ar_m_.enty_ is also r_riodic, with the same period.

Equations (25), solved first with respe'.tto the unknowns x° , x' ; yO, y,,
will finally yield these variables as known fcnctions of •. We note specifi-

cally that Dhe differences x° _, x' x_; _ o , ,- - . - y,, y - y, always re_ain
small and of the order of @' .

Finally, the transformation (!8) will yield x and y as functions of •.

Thus, in the hypotheses established by us as to the value of the parameter

x_ and as to the variations of x'_,the absolute values of the variables x and x'
rc_ain limited and comparable in magnitede to unity. Deoending on the values

O

selected for the integration constants x. and %_,one or the other of the two
arguments v and v' can either increase (or decrease) infinitely with • or else

remain enclosed between two limZts, in the latter case, the considered argument
presents a libration.

Let us now return to the cases of the group (_)s. We must first find
whether the function x_ rem_i_ li_._ted. In view of the second of the formu-

F_S)(A) as well as of the transformation (13), it is ob_lous that the functionhas the particular form of

Fin= (az+ a'_) cosy,

where a and a' are constants. The function _(x) is obtained by introducing, 7_
in F(x) , the quantities x arm y as functions of x° and yO in accordance with
the transformation (18). Finally, we find

,J

By means of integration (c), the variable y must increase from zer) to 2N, if

7(=')> + I.

Conversely, this variable must first increase from -cos-x (-F) up to +cos-x(-V)
and then decrease by the same va]ues, if

--I<7(z0)< + 1.

23&
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In the first case, the square root ._' + cos y remains positive while, in the
second case, it will always have the same sign as dy. Consequently, the integral

fcos ydy
(r)

is _ero in both cases. Finally, because of eqs.(i_) and (2C), we wi]] P_ve

q,_) = a'x' R(7),
_here

• cosydy " dy

(t) (c}

The quantity R(3) is nct identically zero.

Let us now find the expression for a' . The second of the formulas in /77
the system (L) as well as the relations (13) show that

./i;(_l:)
4. "'°J'J'

_,= _.+p-

In Sectio. 28, we gave the expression for the function hip_2)in the six cases of
the group (_)3- We thus find that

a'=O, if [/=0,

and *Yat

a'_O, if i_t= --3, -- 2, --1, +l, +2.

In the five cases in which 3 / O_ the variable _ is more or less constant.
It follows from this that the discussed integration method is still ap_dicable,&

provided that the __tlueof ¥ is not too close to +i.

Conversely, in the remaining ca3e of the group (_-)3,at which,o _l? , thefunction @(.I)_nishes identically. Evidently, the functions F(I' , and
S(I) are also identically zero. It then becomes necessary to investigate the

function _(._).

On forming the equation, defining ¢(_) and S(2) , we see immediately that

c_.')= [a_"].

Moreover, the third of the formulas in the system (/_) as well as the relations
(]3), on putting there j' --O, indicate that
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To investigate the form of this function, for the case in question in which q =
= 5, _ = I, _ = O, it is necessa-y to return to eq.(&) of Section 28. In the
sum given there, the number j' must satisfy the conditions

j' =y + 2,_=j"= _,_, --6<j' + t'<o.

It follows from this that the number j' can assume only the two values j' = O

and :' = -2. Consequently, we will have

To obtain ¢(2), it is _ufficient to replace, in F(_) the Quantity y by its ex-
pression as a _unctlon _f x and y . Usin_ then the mean value of "_2) with

respect to the argument yO (and writing x°.,y'.irmtead of x° and y'), we find

that _.2) would have the form.

¢,_ = p (xo.)+ Q(xo.)co, 2y'..

where P and _ are certain functions of _. This is an ex_.ressionthat depends
t _ t ....

on y. but is independent o_ X.. _onsequently, the varlatxons in the functlon
wwald be of =he order of _'_i, so that the given integration method no longer is
applicable to the case in which q = 3, _ = l, B = O.

Let us now return to the cases of the groups (1)s and (1)4, but excluding
the two cases (9). The second equation in the system (6) as well as the rela-
tions (13) indicate that the function F(I) now has the particular form

F(') = cz + ¢'z'+ (az + a'x')cosy + / (y,y').

The quantities c, c', a, a' are constants. The function f(y, y') is independent
of x and of x' and is periodic in y and y' . We have, specifically,

, dhO) d_(,i-• 1,#

c=.--_o, a'_+ aZ'" /(Y'y')=H'%'"dz'-

The constants c' and a' are not identically zero. It is obvious, as in the dis-

cussion of the cases of the group (½)s, that the function _(.I)has the form

q'_) = Kd, + P(y',),

where K is a constant that generall_ is not zero, whereas the function P(y'.)is
independent of x, and periodic in y.. Consequently, the value of _. generally
remains l_nited. The mentioned integration method is applicable, _rovided that
the value of y is not too close to +l.
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q q

Let us finally return to the cases of the groups (--_4)3and (_--)s, but /79

_z) contains seve1_l periodic ten_a. The secondexcluding the cases in which **___
of eqs.(8) as well as the relations (13) then show that

_'ll) ..- C.1:JrOf.l:_,
where

-i_Zt -4

From this it follows that

(1_)= c'x', + const.

If c' is not zero, which we assume here, the value of x',remains more or less
constant. The mentioned integration method is then applicable, provided that _
is net too c3ose to +I.

We will now integrate eqs.(iS) of Section 27 for the case of

q=3, a=l, _=0

which, until now, had been set aside.

It is convenien; to put then

X = t'";(,, r =!£:;t, =!t',':t,

H** + 2-z**-- c = !,'I,G

and to retain X' as variable, since its variations are comparable in magnitude

to unity. As starting point, we thus obtain the equations

!2:'dz"d"r:dG ,.dr dG= ' !_"d-_ = --
(30)

d z' dG do' dO
d, =d_" d_=--di"

In the expansion

G =: Go+ ll';' G,;, + !,';,G,,,+ ...,

we will have
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HV=. o,, 0 COS t_,Go ----Ax, t+2 I,o.

C,;.-- 0, (3l)

o,:,=/xt,.".--1;,"o.o+ T,_,)oeo._2_+ 7,_)_-.-._,,_(2v- 2,,').
Z_Q

,_/_o,o • .
The coefficient n_o zs a cgnstanv Qsee Section 28). The quantities _,],)are

• tl _
derived from the functzons hl,_, def.ned in Section 28, _y putting there k =

.... , -Lz) . _ ° third degree, _' ofo"These ouan_itles are polynomlals zn X ; n_o zs of .h.
zero degree, and _)2 of the seco.i degree.

For reasons of analogy, we introduce the following notations:

z =Z,, y =ffiv, F=G,

' ' y'--- ' (32)z -----Z, U, !t' _ tl':'.

This will yield the system

.,d_ dF dy dF' d r dY :g =

dz' dF dy' dF (33)

The function F is given by the expansion

F = F (°)+ * + t='=F (2)+ !c'3F(3)+ "",

_:here

F (°) Go=Az _--Bcosy

FI_)==G,;,=/;("o,o+ _(')_ocos 2y + ._r_(J).-.- cos(2y -- 2y'). (3&)

We next introduce new variables x° , _x° instead of x and y, by again making

use of eqs.(18), (29), and (20). /81

Thus, the system (33) is replaced by

d_ dO ,dy°= dO
-"' di *-dy °' t, j_- --_i_o' (35)

dz' d cB d y' d CJ
d_ _ dy' ' di: _ --dz ¢'"
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where the function

• (x%z';yO y,)

represents what becomes the function

F(x, x'; y, if),

if x an_ y are replaced by their expressions as functions of y(x°) ard yO.

The fuuction _ is periodic in v° and y'; with the period 2n. This function
can be expanded in the form of

• ==O(°)+ * + tt't(lg_) + !t'sO(_)+ ....

We have, specifically,

• (o)= B7 (x°)•

The func � �¨° ) must also avoid the vicinity of the value +I.

To reduce the system (35), we star_ from the equation

as,I
_,,as, as, ,/) ,a#; yO, = a'l

where S' and _, are unknown functions. We put

,.9'= z'y' + ,u'(z°y ° + S).

Then, the function S satisfies the equation /82

@(xo +d_ £+ ,d8 y,) O.(xO, x,; .t.,,,dd_).dy °' " dy' ; yo, = y' . i

It is possible to expand _. and _ in the form of

O. = qjc0)+ . + ,.,-"0_2)+ ,t,3@_33+ ...,

8 = tt,, S(_, + ,,,3 S(,) + .... (36)

We first find

q,(o)= _o)= B _,(zo).

Then, the equation yielding ;(,a)and S(a) becomes

dr° de'
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For _) _(_) i.e.,, we must select the mean value of

2_g

o,o .,_ (37)
0

where the function Q(y) is defined by the formula

2_

Q(7)_ _ cos2ydy°=)_2 rAdxOJVT+cosy
0 {¢)

t_ cos 2ydy f dy

(¢1 (e)

The integ_tion procedure (c) has been defLned on p.23_. After having selected

@(_) in thi.,-manner, we obtain the function S(s) by a quadrature without small
divisors, provided that the value of y is not too close to _.

Evidently, it is possible to continue in this manner and to successively /_3
detern_ne the various terms of the series (36).

Consider now the function

8'(z°,, d,; yO,y,)

as well as the canonical transformation

dS' d2'

x"_ dS' dS'
d_,, v,- ,_,,,

which can also be written as

o _ d8 o o d8
_o___ ,. i_-o' Y*-Y = _,'

,as ¢ ,dS (3s)

In view of this transformation, we will have

$(x0 £; yO,y,)= q),(:;o,, z'.;y',).
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Finally, the new variables satisfy the equations
l

d_', dq 4 d_', de, (39)
dv =d_J'. ' dv dz,

dx°. d y°, d q_, '_
dr ="O, dV .... ;t' dx°. " (b.O)

, • ( 0,' Thus, o :_s a constant Its value must be selected such that y.x.) is not
:c]oseto +I.

T The w riables x_ and y_ satisfy the canonical system (39) with one degree
of freedom. This system has the first integral

'4

i,_

,_ : q'. = q'_) + It" q_.)'+ ..... ,p = const. (hl

. (o_ o
:, The flrst term ¢." depet_s only on x. and is a constant. In accordance with
v, eq.(37), the function _' has the form i

P (x',) + P, (x',) cos 2y',, ',

', ]

•_ _here P is a polynomial of the third degree and P_ is a polynomial of the second

....degree in x_.
j_

T t

:, _ The relation (il) shows that"the variable x. always remains limited and
:, ;comparablein magnitude to unity.
ql i

i .... t t , t , . •

! In addltlon, the quantltles x., cos y., and sln y. are _erlodlc functzons
: of T. Thiz is the same for the derivative of the argument y., in accordance

_ith the second equation of the system (/_O).

" After this, let us return to the re]atlons (38). These equations can be

_ isolvedfor x , x ; yO, y, by making use of the generalized Lagrange method _with
J • O

_ Itwovarlables y and y'• We conclude, specifically, that the differences _ -
are comparable to _ _ resp. _ = _ . Thus, x is more

_' _r less constant, and the value of x' remains limited.
4', I t

i i Finally egs.(18) and (19) or eq.(20) permit expressing x and y as f_mctio_

°)andyo.

'; I Thus, the system (33) or the system (30) or else the system (15) of Sec-

, _ion 27 can be integrated in the _.se in which q = 3, _ = l, 6 = O, provided
!thatV is not too close to +2.

_ ! In the method used for integrating the systems (li) and (33), we assumed

" ihat the value of the quantity 7, introduced by eqs.(18) and (19) or eq.(20),

': iisnot too close to +i. We found %,hatthe series (2£) and (36) actually contai_
'! !negativepowers of Y = 1 and of log IV " ii such that their first terms converg_

_ore or less like the terms of a geometric series, in accordance with powers of l

2£1
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_he ratio _' :(V - 1). Consequently, if IV - l! is of the order of _4 in the i

:investigatedcases of the groups (_)s, (+)3, and (+)s and also if IV- ii i_i

comparable to _I_ in the investigated cases of the groups (].)3and (1)4, it is
: impossible tc say anything as to the form of the solution of the system (15) in

Section 27. Specifically, we do not know then whether the variable X' still
remains limited and whether the unkno_l X constantly remains small.

' We should mention also the variations of the arguments in the cases invest_-
: gated in this Section 30. We have seen that one or the other of the aroomments8_

|
V+ jt Vf and Vf

0

(, i(orboth simultaneously) sometimes is subject to a lib_tion. To these libra-
tions there obviously correspond the relations

1:)
a{vn-(p+q;n'_4-J'l,v'+ (j'--_)_v"=0,

II

-' '. trv t + tt v 't _ 0

, between the mean motions n, n', -_9', and -_9" defined above (see PP.196 and
:, !227). Here, we encounter, for the first time in our report, cases character-
:,, _zed by two simultaneous librations.

:_ A few w_,rdsshould be said on the excluded cases of the groups (1)q resp.

_:4 , 3 (i) HC._)
_,, ,_(-_-)qin which the function H.._. resp. contain several periodic terms.

_et us consider, for example, the case

._ q=4, a_-l, ,8_0. (A2

",' If we also use eqs.(1) of Section 30, we will obtain a system of the
' form (2) in which

_"' Go----,4Z,'- B cos v -- B' cos (v -- 2v',_.
t','

:n this expression, A, B, and _ are constants.

" :, The canonical system for _ = O, whose c_mracteristic function is C_, can
be integrated by the Jacobi method. However, it is easy to demonstrate that,
_n th_s solution, the variab]e X_ is not limited. Evidently, we cannot start

' _rom such a solution, in the application of the method of arbitrary variation
bf constants.

" I The artifice used so successfully in the.case in which q = 3, _ = ], _ = i

":' iisno longer efficient in _he present c_se.

Conseguently, in the excluded cases in which Oo contains several periodic

_42
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terms, we know nothing as yet on the general character of the solution, if
the initial value of X is sufficiently sm_ll. W _.will return to this question
in Section 32 and treat it t._re in a different manner.

Section _.

Toward the end of Secbion 29, we integrz ted the system (15) of Section 27,

by assuming that the initial w.lue of X is o: the order of _ or smaller. We i
excluded there not on3y the cases investigated later in the present Section out

also the cases of the groups ,(2)q, i.e., the cases in which the argument v ap-

_pears first in the f uctlon.... _ _j . Here, we will restur,e the integration for i

certain cases of, the _,_ups (2)q. We again will use cqs.(8) of Section 29. Th(
_riables XI, XI ; v, v again satisfy a canonical system of the form (9) of

Section 29. In the series (I0) of the same Section, the first term will r_w be

expressed by

" dh'o!i, dhl,','o
, Go=AZ.,'+ d-_:X,+ d_'_z,'+ hi_,_o_(. + i'v').

_ere, we have already caused the following te:,_n to "_nish by using the art.trice

_given on p. 226
l

'l

.which does. appear as soon as q = 3 or _, In addition, we ha_e assumed that the

: £unction H_, J includes a single term periodic in v.

" i We will introduce here new variables by setting, somewhat similar _o

eq.(13) of Section 30,

, d_,_,'.)oj,.o.o)x::7. + 2A _ d Z + dz' ' y==v + fv',

(1)
_t • yt ::: tfl.: .... / 7., + Z,',

_ _he variables x, x' ; y, y' satisfy the canonical system

_ ' dx dF dy dF

" dt dy dr .... blx .
, (2:
,' dx' dF dy' dF

.... r "d t)d, y dv _ --dx' "

_he characteristic function F = G - eonst can be expanded in powers of _' = _ y_

F = _,o)+ ,,,'F(') _ ,,',FI2)+ .... (2)

2h3
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The principsl term of this expansion has the specific form.

F_°*---A z'--B cos y + Cz'. (&)

The quantities A, B, C are constants. The last quantity is expressed by

d_

The functions F(I_ F(_), , ... are polynomials in x and _ , which are periodic
wdth respect to the angular variables y and f having the period 2-.

' TI_s makes us returr._gain to a canonical system, slightly more general
than the system (i_) in Section 30. Below, we will assume that

0_'0,

and even that ICI is not small.

7. To reduce eqs.(2) to the normal form given -'nSection i, we will replace x'
• aml y by the variables x° and yO, by means of the canonical transformation (18)
" of Section 30.

--" The fuuction V(x°) is practically constant because of the Jacobi integral
:' and because of the fac_ that x' is practically constant. Below, we will assume

.thatthe value of V does not too closely approach the value +i.
_%

' As in Section 30, we differentiate two cases. If /88

"" _'> + I,

"=-then the function V will be defined by eq.(19) of Section 30. If, conversely,
i:

:_ --l<y<+l,

_- then V will be determined by eq. (20) of the same Section.

:_ _ In the first case, x and y - yO are periodic functions in yO, with the
_oriod 2.. In the second case, x and y resume their initial values as soon as

.- . .

' y Increases by 2.. In addltlon, x and y are holomorphous in x° a_ long as
t 0

N_x ) / +i.

ii The variables x° , x'; yO y, satisfy a canonical system

dz° d_ dy° d_

_' dz _- d_ dy' d_ i

[ i
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where

F(z, £; y, y';=re(e, z'; ,2, Y')-

The function _, which is periodic in "_ ar_ y' , _th the period 2n, can be
e.xpandedin the form of

_ _0)+ it,_s_+ !,,-_+ ....

The principal te_ of this expansion is expressed by

_o___BI(_) + Oz'.

Thus, the system (6) is of the normal type, investigated in Section i.

If _he two quantities

d7

are not .moreor less at a commensurable and simple ratio, then the system (6)
can be reduced to another system whose characteristic function does not depend

_ On the angular variables. In that case, a formal integration is easy.

If, conversely, a certain di%_isor

kBd.7.+ FC

is small, we can qe the method described in Section i for introducing new
canonical variables 4, ' o ,x.; The new characteristic function depends, Y., Y.-

on y_ and y_ only in the combination

k,J°, + l"y',.

-- From this, we obtain the first integral

, @
k x, --/cx',:=const.

By means of a linear canonical transformation, the new system reduces to anothe]
System, with one degree of freedom. It is easy to demonstrate that the formal
integration presents no difficulty.

Thus, we are able to integrate eqs.(15) of Section 27 als_ in the cases of

the groups (2)q, by assuming that the initial value of X is of the order of
or s_%ller, that the initial value of X' is neither too large nor too small, an4
_%hat- in addition - the initial _alue of the derivative !

_5
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is not too small. (We h_ve been forced to exclude only the cases in which the

function 6 ) includes two or several periodic terms in v.) Under these condi-
tions, we found that the ratio IX]:_ cannot become large and that the value of
X' remains more or less constant.

Section 32.

In the three preceding Sections, ._ehave frequently been able to complete

the integration of the ecf_tions of motion of doubly critical planets. In all i

cases in which the integration has been possible, it happens that the major
axis, the eccentricity, and the inclination remain practically invariant.

This raises an interesting problem. It is he1_ a question to know whether,
_n the cases in which formal integration has been impossible, the inequalities

!

of the mentioned elements may become so extensive that the investigated planet
changes into a comet.

To investigate this problem, we return to eqs.(!5) of Section 27. The
: canonical system in question possesses the first Jacobi integral

H** = const. (1)

Primarily, let us consider the types in which
-

!" _xcluding, however, the cases of the group (I/2)s, i.e., the cases

q=3, a=l, --3<#< �2.(2)

Let

H(')_:* " ( $$i

,_ be the expression of the function _) by putting there X = O.

The Jacobi integral can then be written as

' -4Z' �._,(H(,'.))+ .... const. (3)
L

_he neglected terms of the first member of this equation are of the order of _
I *

or smal!er, as long as ,_]:_ and × --havevalues that are not too large. The i
i)_

_ _function (_,_ _ is a pol_n_omialin _ , with coefficient_ that are trigonometri_
,L, _ • t ° ,unctlons with respect to the arguments v and v In the cases of the group (1)a

!
_nd are constants in the cases of t_'°group_ s, (2)a, a, (3)a ,.. I

Let us recall specifically that the function (_;), for o = 3, is a polynomiali

_f the sixth degree in ,_ and that the coefficient of X'3"is al_ys _sitive

_6
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(see p- 213)-

in accordance with our _ssumption, the constant of the second member of

eq.(2) is of the order of _. In view of this, it is obvious tP_t the values of

the positive quantities !:.._,_ and k' can never exceed a certain finite _.imi_
which is independent of _.

Thus, for critical "ianets of the tyres, p * 3 , the stabi]itv, is ensured
[,

from the formal vie wpc:nt, except _erhaps in the cases (2).

This proof i_ no longer apo!icabie at _.z &, since then the f,_nction u(:)

may become neF_.tive f_r large values of A' •

Let us now conaider the _-._.,pes in which

9>4

excluding only the cases of the group _1)4, i.e., the cases

q:4, .=]. fl=--_,--3,--2,--1,0, + ],+2, +4. (h)

We "_i!l assume here that, at the origin of time, the absolute value of the

unknown X is small with respect to _H2 and that the value of X' is finite. We

wili demonstrate that the absolute value 9f X 611 always re_in s_a]i with
& I -°

respec_ te _ and that the unknown X will always remain ;.ractically invariant,

- For _he proof, we aTain start from the first Jacobi integral, given bv

eq.(!).

In the series (17) of Section 27, the first terms are expressed by

.. H_, _= A X' + const.,

"" Ht'I:)--=0

. Hm = h"_
• , O,O"

_(_) it is sufficient to recall that this functio_
h;ith respect to the function ,o,o ,
is a polynomial in X' , which is irdeoendent of v and v , is rational with re-

spect to X, and is finite for X = O.

; Let (_)) be the polynomial in X' with constant coefficients, obtained by'

:putting X = 0 in _) i• i

Then, because of the Jacobi integral, we will have

_, _x_O%+ .... const,.4_ + !, v'o,o,

The neglecte6 terms of the first member of this eqL_tion are of the order of

2&7
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_a_ as long as X' and IX'/_I i_ve not boo large a va_ue.
b

Let. us assume, an assumption which we want to prove im_ssib]e, that the

variable X' varies bv a quantity comparab!_ in m_gr/tude to unity. In a case

of this natu__e, we could fix an instant _ such that the value of X' '_uld be

neither too large nor too small but sufficiently different from the initial

value. Because of the Jacobi integral, the corresponding value of the _tio

IX_i _u!d be neither too large nor too small but comparab1_e in _.agnituce to

unity. Then• we could select the instant _ as the origin of time and demmn-

strate, by means of the process given in Section 29, that the absolute value of

the _nPmown X could still _%ve been compar_bie in magnitude to unity. However,
this cannot be true since we have assumed tF_%t X had first been small with re-

spect to/_. Thus, X' remains more or !_ss in'r_riant, and the Quantity IXI:_"_
remains still small.

From the above disc_msion we can conclude that the inequalities of the

major axis, of the eccentricity• and of the inclination are always small for

doubly critical planets• except possibly for planets of the types (p + 3):P in
the cases in which

c"

-. a=l, /_ = --3, --2,--1, 0, + l, + 2,

and for planets of the types (p + _):p _.n the eases in which
f,

.'- a=l, f =--4,--3,--2,-- 1,0, + 1, + 2, + 4.

In these exceptional cases, we are unable to _ke any statements as to the _

-_ magnitude of the inequalities of the mentioned elements.

_ . We _nt to emphasize specifically the rather remar_ble result t1._t the

motion of critical planets is stable from the viewpoint of focal calculus, in

_ all types in which

_' Before concluding this report, we will give a few formulas that right be /93

"- useful for classifying, in the theory of doubly critical planets, the inequali-i
ties of the primary elements x:, yx, gk , '_ defined in Section 2. These formu-

' !las are

":,, ---x,+ itz** + _ (z-- z**) + (z,--_,)

=:_,+ :,z,._+ !,apz + p (z--z**)_-z,--e,,

,_,_9,+ (y,-9,)=9 + P+qt + ('_,--9,)
P

,4

,- =9. + _-+ q-z+ (9-9..) + (y,--9,),
P

2&8

1965019998-249



NASA TT F-9&L5

=_ t,,,**+ I,'_(,;'--,'_,)+ (_,--_,),,,,_,+ (I,-4,) " '

I :,, _, + V.,_(_" + (_.._--+,0.

Thus, the inequalities are subdivided into three grouF_. Those of the first
group are slowly variable and are obtained by integration of the system (Ii) of
Section 27. The inequalities of the second group, which also varyjs]owly, are
derived after solving eqs.(10) of the same section. Finally, the inequalities
of the thi._dgroup, whose variations are rapid, are defined by the formu]_s (13)
of Section 16.
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